Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Funct Plant Biol ; 512024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39222467

RESUMEN

Climate change-induced drought stress decreases crop productivity, but the application of ß-sitosterol (BS) and biochar (BC) boosts crop growth and yield. A pot experiment was conducted to examine the effects of the alone and combined application of BS and BC on the growth and yield of Phaseolus vulgaris under drought stress. The synergistic application of BS and BC increased plant height (46.9cm), shoot dry weight (6.9g/pot), and root dry weight (2.5g/pot) of P. vulgaris plants under drought stress. The trend of applied treatments for photosynthetic rate remained as BC (15%)

Asunto(s)
Carbón Orgánico , Sequías , Phaseolus , Sitoesteroles , Sitoesteroles/farmacología , Phaseolus/efectos de los fármacos , Phaseolus/fisiología , Phaseolus/crecimiento & desarrollo , Carbón Orgánico/farmacología , Valor Nutritivo , Estrés Fisiológico/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Peróxido de Hidrógeno/metabolismo , Malondialdehído/metabolismo , Resistencia a la Sequía
2.
Sci Rep ; 14(1): 20762, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39237584

RESUMEN

Captioning an image involves using a combination of vision and language models to describe the image in an expressive and concise sentence. Successful captioning task requires extracting as much information as possible from the corresponding image. One of these key pieces of information is the topic to which the image belongs. The state-of-the-art methods used topic modeling depending only on caption text in order to extract these topics. The problem with extracting the topics using topic modeling only on caption text is that it lacks the consideration of the image's semantic information. Instead, concept modeling extracts the concepts directly from the images in addition to considering the corresponding caption text. Concept modeling can be used in image captioning to extremely capture the image contexts and benefit from it to produce more accurate descriptions. In this paper, novel image captioning models are proposed by utilizing the concept modeling technique. The first concept-based model is proposed by utilizing LSTM as a decoder while the second model is proposed in association with new multi-encoder transformer architecture. Standard metrics have been used to evaluate the proposed models using Microsoft COCO and Flickr30K datasets. The proposed models outperformed the related work methods with reduced computational complexity.

3.
Artículo en Inglés | MEDLINE | ID: mdl-39258658

RESUMEN

Rotavirus, a dsRNA virus in the Reoviridae family, shows a segmented genome. The VP1 gene encodes the RNA-dependent RNA polymerase (RdRp). This study aims to develop a multiepitope-based vaccine targeting RdRp using immunoinformatic approaches. In this study, 100 available nucleotide sequences of VP1-Rotavirus belonging to different strains across the world were retrieved from NCBI database. The selected sequences were aligned, and a global consensus sequence was developed by using CLC work bench. The study involved immunoinformatic approaches and molecular docking studies to reveal the promiscuous epitopes that can be eventually used as active vaccine candidates for Rotavirus. In total, 27 highly immunogenic, antigenic, and non-allergenic T-cell and B-cell epitopes were predicted for the Multiepitope vaccine (MEV) against rotavirus. It was also observed that MEV can prove to be effective worldwide due to its high population coverage, demonstrating the consistency of this vaccine. Moreover, there is a high docking interaction and immunological response with a binding score of -50.2 kcal/mol, suggesting the vaccine's efficacy. Toll-like receptors (TLRs) also suggest that the vaccine is physiologically and immunologically effective. Collectively, our data point to an effective MEV against rotavirus that can effectively reduce viral infections and improve the health status worldwide.


Asunto(s)
Simulación del Acoplamiento Molecular , Vacunas contra Rotavirus , Rotavirus , Vacunas de Subunidad , Rotavirus/inmunología , Rotavirus/genética , Vacunas de Subunidad/inmunología , Vacunas de Subunidad/genética , Vacunas contra Rotavirus/inmunología , ARN Polimerasa Dependiente del ARN/inmunología , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/química , Biología Computacional , Epítopos de Linfocito T/inmunología , Epítopos de Linfocito T/genética , Humanos , Epítopos/inmunología , Epítopos/genética , Epítopos de Linfocito B/inmunología , Epítopos de Linfocito B/genética , Infecciones por Rotavirus/prevención & control , Infecciones por Rotavirus/inmunología , Inmunoinformática , Vacunas de Subunidades Proteicas
4.
Front Plant Sci ; 15: 1425834, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39086913

RESUMEN

Introduction: Recent advancements in nanotechnology present promising opportunities for enhancing crop resilience in adverse environmental conditions. Methods: In this study, we conducted a factorial experiment to investigate the influence of potassium nanosilicate (PNS) on sorghum plants exposed to varying degrees of drought stress A randomized complete block design with three replications was employed to subject the sorghum plants to different drought conditions. The three levels of stress were designated as non-stress (NS at -0.03 MPa), moderate stress (MD at -0.6 MPa), and severe stress (SD at -1.2 MPa). The plants were administered PNS at concentrations of 0 mM (control), 3.6 mM Si, and 7.2 mM Si. Results and discussion: As drought stress intensified, we observed significant reductions in multiple plant parameters, including height, fresh weight, dry weight, leaf number, stem diameter, cluster length, seed weight, and nutrient uptake, with the most pronounced effects observed under SD conditions. Interestingly, nitrogen (N) and potassium (K) levels exhibited an increase under drought stress and PNS application, peaking at MD, alongside Si concentrations. Notably, PNS application facilitated enhanced nutrient uptake, particularly evident in the significant increase in nitrogen concentration observed at 3.6 mM PNS. Furthermore, the application of PNS significantly enhanced the fresh weight and nutrient concentrations (notably K and Si) in sorghum seeds under drought stress, despite varying statistical significance for other nutrients. These findings shed light on the mechanisms through which PNS exerts beneficial effects on plant performance under drought stress. By elucidating the complex interactions between PNS application, drought stress, and plant physiology, this study contributes significantly to the development of sustainable agricultural practices aimed at bolstering crop resilience and productivity in water-limited environments.

5.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167353, 2024 10.
Artículo en Inglés | MEDLINE | ID: mdl-39004381

RESUMEN

BACKGROUND: The growth arrest and DNA damage-inducible 45 (Gadd45) gene has been implicated in various central nervous system (CNS) functions, both normal and pathological, including aging, memory, and neurodegenerative diseases. In this study, we examined whether Gadd45A deletion triggers pathways associated with neurodegenerative diseases including Alzheimer's disease (AD). METHODS: Utilizing transcriptome data from AD-associated hippocampus samples, we identified Gadd45A as a pivotal regulator of autophagy. Comprehensive analyses, including Gene Ontology enrichment and protein-protein interaction network assessments, highlighted Cdkn1A as a significant downstream target of Gadd45A. Experimental validation confirmed Gadd45A's role in modulating Cdkn1A expression and autophagy levels in hippocampal cells. We also examined the effects of autophagy on hippocampal functions and proinflammatory cytokine secretion. Additionally, a murine model was employed to validate the importance of Gadd45A in neuroinflammation and AD pathology. RESULTS: Our study identified 20 autophagy regulatory factors associated with AD, with Gadd45A emerging as a critical regulator. Experimental findings demonstrated that Gadd45A influences hippocampal cell fate by reducing Cdkn1A expression and suppressing autophagic activity. Comparisons between wild-type (WT) and Gadd45A knockout (Gadd45A-/-) mice revealed that Gadd45A-/- mice exhibited significant cognitive impairments, including deficits in working and spatial memory, increased Tau hyperphosphorylation, and elevated levels of kinases involved in Tau phosphorylation in the hippocampus. Additionally, Gadd45A-/- mice showed significant increases in pro-inflammatory cytokines and decreases autophagy markers in the brain. Neurotrophin levels and dendritic spine length were also reduced in Gadd45A-/- mice, likely contributing to the observed cognitive deficits. CONCLUSIONS: These findings support the direct involvement of the Gadd45A gene in AD pathogenesis, and enhancing the expression of Gadd45A may represent a promising therapeutic strategy for the treatment of AD.


Asunto(s)
Enfermedad de Alzheimer , Autofagia , Proteínas de Ciclo Celular , Inhibidor p21 de las Quinasas Dependientes de la Ciclina , Hipocampo , Ratones Noqueados , Animales , Autofagia/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/genética , Ratones , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Humanos , Hipocampo/metabolismo , Hipocampo/patología , Masculino , Modelos Animales de Enfermedad , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Ratones Endogámicos C57BL , Mapas de Interacción de Proteínas , Proteinas GADD45
6.
Front Aging Neurosci ; 16: 1379431, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38867846

RESUMEN

Background: Taurine, an amino acid abundantly found in the brain and other tissues, has potential neuroprotective properties. Alzheimer's disease (AD) is a commonly occurring type of dementia, which becomes more prevalent as people age. This experiment aimed to assess the neuroprotective effects of taurine on SH-SY5Y cells by examining its impact on Dihydrotestosterone (DHT), Dihydroprogesterone (DHP), as well as the expression of miRNA-21 and miRNA-181. Methods: The effects of various taurine concentrations (0.25, and 0.75 mg/mL), and LPS (0.1, and 12 mg/mL) on the SH-SY5Y cell line were assessed using the MTT assay. The levels of DHT and DHP were quantified using an ELISA kit. Additionally, the expression levels of miRNA-181 and miRNA-21 genes were examined through Real-Time PCR analysis. Results: The results of the MTT assay showed that treatment with taurine at concentrations of 0.25, and 0.75 mg/mL reduces the toxicity of LPS in SH-SY5Y cells. ELISA results indicated that taurine at a concentration of 0.25, and 0.75 mg/mL significantly elevated DHT and DHP hormones in the SH-SY5Y cell line compared to the untreated group (p < 0.01). The expression levels of IL-1ß and IL-6 were decreased under the influence of LPS in SH-SY5Y cells after taurine treatment (p < 0.01). Gene expression analysis revealed that increasing taurine concentration resulted in heightened expression of miRNA-181 and miRNA-21, with the most significant increase observed at a concentration of 0.75 mg/mL (p < 0.001). Conclusion: Our study findings revealed that the expression of miRNA-181 and miRNA-21 can be enhanced by taurine. Consequently, exploring the targeting of taurine, miRNA-181, and miRNA-21 or considering hormone therapy may offer potential therapeutic approaches for treating AD or alleviating severe symptoms. Nonetheless, in order to fully comprehend the precise mechanisms involved, additional research is required.

7.
J Microsc Ultrastruct ; 12(1): 14-20, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38633568

RESUMEN

Objective: The objective of the study is to investigate changes occurring in key inflammatory cytokines at molecular level (including genetic and protein) in placental bed of placenta creta compared to that of normal placenta and their correlation to interstitial extravillous trophoblasts (EVT) number. Subjects and Methods: Case-control study including placentas of patients with invasive placentation (creta placentas, n = 19) compared with those of normal placentation (n = 19). Besides routine histology and immunocytochemistry detection (cytokeratin-7 [CK-7]), addition to biochemical evaluation of expression of various cytokines including tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1ß), IL6, IL-1RA, IL-8, IL-10, and IL-13 was carried out. Results: Routine histological examination of placentas of creta cases revealed CK-7+ extravillous trophoblasts (EVT) penetrating deeply the myometrium with various histopathological arrangements and trophoblastic vascular invasion of the deep myometrial blood vessels. A significant increase (P < 0.05) in the mRNA expression of TNF-α, IL-1 ß, and IL6 with an insignificant decrease in placental bed IL-1RA, IL-8, IL-10, and IL-13 was observed in creta cases compared to the control ones. A corresponding significant increase was detected in the protein levels of TNF-α, IL-1 ß, and IL-6 as well as an insignificant decrease in placental bed IL-1RA, IL-8, IL-10, and IL-13 in creta cases compared to the normal ones. Moreover, we displayed a significant positive correlation (P < 0.05) between interstitial EVT number and mRNA expression of almost all pro-inflammatory cytokines with negative but insignificant correlation with anti-inflammatory cytokines in creta cases. Conclusion: The upregulated pro-inflammatory cytokines and the correlation of their expression with the increased interstitial EVT provide a supporting evidence of their potentially more relevant role in the development of placenta creta than the anti-inflammatory ones.

8.
Front Pharmacol ; 15: 1362739, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38645563

RESUMEN

Introduction: Betanin (C24H26N2O13) is safe to use as food additives approved by the FDA with anti-inflammatory and anticancer effects in many types of cancer cell lines. The current experiment was designed to test the chemotherapeutic effect of the combination of betanin with the standard chemotherapeutic agent, capecitabine, against chemically induced colon cancer in mice. Methods: Bioinformatic approach was designed to get information about the possible mechanisms through which the drugs may control cancer development. Five groups of mice were assigned as, (i) saline, (ii) colon cancer, (iii) betanin, (iv) capecitabine and (v) betanin/capecitabine. Drugs were given orally for a period of six weeks. Colon tissues were separated and used for biological assays and histopathology. Results: In addition, the mRNA expression of TNF-α (4.58-fold), NFκB (5.33-fold), IL-1ß (4.99-fold), cyclin D1 (4.07-fold), and IL-6 (3.55-fold) and protein levels showed several folds increases versus the saline group. Tumor histopathology scores in the colon cancer group (including cryptic distortion and hyperplasia) and immunostaining for NFκB (2.94-fold) were high while periodic-acid Schiff staining demonstrated poor mucin content (33% of the saline group). These pathologic manifestations were reduced remarkably in betanin/capecitabine group. Conclusion: Collectively, our findings demonstrated the usefulness of betanin/capecitabine combination in targeting colon cancer and highlighted that betanin is a promising adjuvant therapy to capecitabine in treating colon cancer patients.

9.
ACS Omega ; 9(8): 8973-8984, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38434836

RESUMEN

Vitamin C was examined to ameliorate the neurotoxicity of thimerosal (THIM) in an animal model (Wistar albino rats). In our work, oxidative and antioxidative biomarkers such as SOD, LPO, and GSH were investigated at various doses of THIM with or without concurrent vitamin C administration. Furthermore, the adverse effects of THIM on hepatic tissue and cerebral cortex morphology were examined in the absence or presence of associated vitamin C administration. Also, we studied the effect of vitamin C on the metallothionein isoforms (MT-1, MT-2, and MT-3) in silico and in vivo using the RT-PCR assay. The results showed that the antioxidant biomarker was reduced as the THIM dose was raised and vice versa. THIM-associated vitamin C reduced the adverse effects of the THIM dose. The computation studies demonstrated that vitamin C has a lower ΔG of -4.9 kcal/mol compared to -4.1 kcal/mol for THIM to bind to the MT-2 protein, which demonstrated that vitamin C has a greater ability to bind with MT-2 than THIM. This is due to multiple hydrogen bonds that exist between vitamin C and MT-2 residues Lys31, Gln23, Cys24, and Cys29, and the sodium ion represents key stabilizing interactions. Hydrogen bonds involve electrostatic interactions between hydrogen atom donors (e.g., hydroxyl groups) and acceptors (e.g., carbonyl oxygens). The distances between heavy atoms are typically 2.5-3.5 Å. H-bonds provide directed, high-affinity interactions to anchor the ligand to the binding site. The five H-bonds formed by vitamin C allow it to form a stable complex with MT, while THIM can form two H-bonds with Gln23 and Cys24. This provides less stabilization in the binding pocket, contributing to the lower affinity compared to vitamin C. The histopathological morphologies in hepatic tissue displayed an expansion in the portal tract and the hepatocytes surrounding the portal tract, including apoptosis, binucleation, and karyomegaly. The histopathological morphologies in the brain tissue revealed a significant decrease in the number of Purkinje cells due to THIM toxicity. Interestingly, THIM toxicity was associated with hemorrhage and astrogliosis. Both intracellular and vasogenic edema appeared as the concentrations of THIM rose. Finally, vitamin C ameliorated the adverse effect on the cerebral cortex in Wistar albino rats.

10.
Environ Sci Pollut Res Int ; 31(17): 25258-25272, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38468007

RESUMEN

Chromium (Cr) toxicity can negatively affect plant growth and development, impacting agricultural productivity and posing risks to human health. Metallic nanoparticles (MNPs) such as titanium dioxide (TiO2) and natural growth regulators such as melatonin (MT) become a promising technology to manage heavy metal-contaminated soils and promote safe food production. The present work was conducted to find the effect of foliar application of TiO2 NPs (15 mg L-1) and MT (100 µM) on growth, biochemical attributes, and Cr accumulation in plant tissues of Melissa officinalis L. under Cr toxicity (50 and 100 mg Cr kg-1 soil). The results showed that Cr toxicity led to decreased plant performance, where 100 mg Cr kg-1 soil led to notable decreases in shoot weight (28%), root weight (27%), essential oil (EO) yield (34%), chlorophyll (Chl) a + b (33%), while increased malondialdehyde (MDA, 30%), superoxide dismutase (SOD) activity (51%), and catalase (CAT) activity (122%). The use of TiO2 NPs and MT, particularly their co-application, remarkably reduced Cr toxicity by enhancing plant weight, Chl content, and lowered MDA and antioxidant activity. Total phenolic content (TPC), total flavonoid content (TFC), EO percentage, and rosmarinic acid in plants treated with Cr at 50 mg Cr kg-1 soil and co-application of TiO2 NPs and MT were relatively higher than in other treatments. Under 100 mg Cr kg-1 soil, the synergic effect of TiO2 NPs and MT-enhanced rosmarinic acid content (22%) but lowered Cr accumulation in roots (51%) and shoots (72%). Heat map analysis showed that CAT, SOD, MDA, and EO yield had the maximum variability under Cr, TiO2 NPs, and MT. Exogenous TiO2 NPs and MT can be recommended to modulate Cr toxicity in lemon balm under soil Cr toxicity.


Asunto(s)
Melatonina , Melissa , Nanopartículas del Metal , Nanopartículas , Contaminantes del Suelo , Humanos , Cromo/análisis , Titanio/análisis , Antioxidantes/análisis , Ácido Rosmarínico , Superóxido Dismutasa , Suelo , Contaminantes del Suelo/análisis
11.
J Appl Genet ; 65(1): 83-93, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37875608

RESUMEN

Melanoma, a highly invasive type of skin cancer that penetrates the entire dermis layer, is associated with increased mortality rates. Excessive exposure of the skin to sunlight, specifically ultraviolet radiation, is the underlying cause of this malignant condition. The appearance of unique skin moles represents a visible clue, referred to as the "ugly duckling" sign, indicating the presence of melanoma and its association with cellular DNA damage. This research aims to explore potential biomarkers derived from microarray data, employing bioinformatics techniques and methodologies, for a thorough investigation of melanoma skin cancer. The microarray dataset for melanoma skin cancer was obtained from the GEO database, and thorough data analysis and quality control measures were performed to identify differentially expressed genes (DEGs). The top 14 highly expressed DEGs were identified, and their gene information and protein sequences were retrieved from the NCBI gene and protein database. These proteins were further analyzed for domain identification and network analysis. Gene expression analysis was conducted to visualize the upregulated and downregulated genes. Additionally, gene metabolite network analysis was carried out to understand the interactions between highly interconnected genes and regulatory transcripts. Molecular docking was employed to investigate the ligand-binding sites and visualize the three-dimensional structure of proteins. Our research unveiled a collection of genes with varying expression levels, some elevated and others reduced, which could function as promising biomarkers closely linked to the development and advancement of melanoma skin cancer. Through molecular docking analysis of the GINS2 protein, we identified two natural compounds (PubChem-156021169 and PubChem-60700) with potential as inhibitors against melanoma. This research has implications for early detection, treatment, and understanding the molecular basis of melanoma.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Humanos , Melanoma/genética , Melanoma/metabolismo , Simulación del Acoplamiento Molecular , Rayos Ultravioleta , Neoplasias Cutáneas/genética , Perfilación de la Expresión Génica/métodos , Biomarcadores , Redes Reguladoras de Genes , Biología Computacional/métodos , Biomarcadores de Tumor/genética , Regulación Neoplásica de la Expresión Génica , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo
12.
J Appl Genet ; 65(2): 341-354, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38030871

RESUMEN

The coronavirus disease 2019 (COVID-19) was first found in Wuhan, China, in December 2019. Because the virus spreads quickly, it quickly became a global worry. Coronaviridae is the family that contains both SARS-CoV-2 and the viruses that came before (i.e., MERS-CoV and SARS-CoV). Recent sources portray that the COVID-19 virus has affected 344,710,576 people worldwide and killed about 5,598,511 people in the last 2 years. The B.1.1.529 strain, later called "Omicron," was named a Variant of Concern on November 24, 2021. The SARS-CoV-2 virus has gone through a never-ending chain of changes that have never happened before. As a result, it has many different traits. Most of these changes have occurred in the spike protein, where antibodies bind. Because of these changes, the Omicron type is very contagious and easy to pass on. There have been a lot of studies done to try to figure out this new challenge in the COVID-19 strains race, but there is still a lot that needs to be explained. This study focuses on virtual screening, docking, and molecular dynamic analysis; we aimed to identify therapeutic candidates for the SARS-CoV-2 variant Omicron based on their ability to inhibit non-structural proteins. We investigate the prediction of the properties of a substantial database of drug molecules obtained from the OliveNet™ database. Compounds that did not exhibit adequate gastrointestinal absorption and failed the Lipinski test are not considered for further research. The filtered compounds were coupled with our primary target, SARS-CoV-2 Omicron spike protein. We focused on SARS-CoV-2 Omicron spike protein and filtering potent olive compounds. Pinoresinol, the most likely candidate, is bound best (- 8.5 kcal/mol). Pinoresinol's strong interaction with the active site made the complex's dynamic structure more resilient. MD simulations explain the protein-ligand complex's stability and function. Pinoresinol may be a promising SARS-CoV-2 Omicron spike protein receptor lead drug, and additional research may assist the scientific community.


Asunto(s)
COVID-19 , Furanos , Lignanos , Olea , SARS-CoV-2 , Humanos , Simulación de Dinámica Molecular , Glicoproteína de la Espiga del Coronavirus
13.
Metab Brain Dis ; 39(1): 77-88, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38129732

RESUMEN

Neuro-oncological and neurodegenerative disorders, represented paradigmatically by glioblastoma and Alzheimer's disease, respectively, persist as formidable challenges in the biomedical realm. The interconnected molecular underpinnings of these conditions necessitate rigorous and novel therapeutic examinations. This comprehensive research was anchored on the premise of unveiling the therapeutic potential and specificity of Lupenone, a potent phytoconstituent, in targeting the molecular pathways underpinning both glioblastoma and Alzheimer's amyloid beta pathology. This was gauged through its interactions with key protein structures, 5H08 and 2ZHV. An integrative approach was adopted, marrying advanced proteomics and modern computer-aided drug design techniques. Molecular docking of Lupenone with 5H08 and 2ZHV was meticulously executed, with subsequent molecular dynamics simulations providing insights into the stability, viability, and intricacies of these interactions. Lupenone demonstrated profound binding affinities, evidenced by robust docking scores of -9.54 kcal/mol for 5H08 and -10.59 kcal/mol for 2ZHV. These interactions underscored Lupenone's eminent therapeutic potential in mitigating glioblastoma and modulating the amyloid beta pathology inherent to Alzheimer's. The introduction of Proteolysis Targeting Chimeras (PROTACs) further magnified the therapeutic prospects, accentuating Lupenone's efficacy. The findings of this study not only underscore the therapeutic acumen of Lupenone in addressing the challenges posed by glioblastoma and Alzheimer's but also lay a strong foundation for its consideration as a leading candidate in future neuro-oncological and neurodegenerative research endeavors. Given the compelling in-silico data, a clarion call is made for its empirical validation in holistic in-vivo settings, potentially pioneering a new therapeutic epoch in both glioblastoma and Alzheimer's interventions.


Asunto(s)
Enfermedad de Alzheimer , Glioblastoma , Lupanos , Humanos , Péptidos beta-Amiloides/metabolismo , Simulación de Dinámica Molecular , Enfermedad de Alzheimer/metabolismo , Glioblastoma/tratamiento farmacológico , Simulación del Acoplamiento Molecular
14.
Plants (Basel) ; 12(21)2023 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-37960071

RESUMEN

Salinity adversely affects the plant's morphological characteristics, but the utilization of aqueous algal extracts (AE) ameliorates this negative impact. In this study, the application of AE derived from Chlorella vulgaris and Dunaliella salina strains effectively reversed the decline in biomass allocation and water relations, both in normal and salt-stressed conditions. The simultaneous application of both extracts in salt-affected soil notably enhanced key parameters, such as chlorophyll content (15%), carotene content (1%), photosynthesis (25%), stomatal conductance (7%), and transpiration rate (23%), surpassing those observed in the application of both AE in salt-affected as compared to salinity stress control. Moreover, the AE treatments effectively mitigated lipid peroxidation and electrolyte leakage induced by salinity stress. The application of AE led to an increase in GB (6%) and the total concentration of free amino acids (47%) by comparing with salt-affected control. Additionally, salinity stress resulted in an elevation of antioxidant enzyme activities, including superoxide dismutase, ascorbate peroxidase, catalase, and glutathione reductase. Notably, the AE treatments significantly boosted the activity of these antioxidant enzymes under salinity conditions. Furthermore, salinity reduced mineral contents, but the application of AE effectively counteracted this decline, leading to increased mineral levels. In conclusion, the application of aqueous algal extracts, specifically those obtained from Chlorella vulgaris and Dunaliella salina strains, demonstrated significant efficacy in alleviating salinity-induced stress in Phaseolus vulgaris plants.

15.
Chemosphere ; 340: 139832, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37591372

RESUMEN

Climate change has become the global concern due to its drastic effects on the environment. Agriculture sector is the backbone of food security which remains at the disposal of climate change. Heat stress is the is the most concerning effect of climate change which negatively affect the plant growth and potential yields. The present experiment was conducted to assess the effects of exogenously applied ß-sitosterol (Bs at 100 mg/L) and eucalyptus biochar (Eb at 5%) on the antioxidants and nutritional status in Thymus vulgaris under heat stressed conditions. The pot experiment was conducted in completely randomize design in which thymus plants were exposed to heat stress (33 °C) and as a result, plants showed a substantial decline in morpho-physiological and biochemical parameters e.g., a reduction of 59.46, 75.51, 100.00, 34.61, 22.65, and 38.65% was found in plant height, shoot fresh weight, root fresh weight, dry shoot weight, dry root weight and leaf area while in Bs + Eb + heat stress showed 21.16, 56.81, 67.63, 23.09, 12.84, and 35.89% respectively as compared to control. In the same way photosynthetic pigments, transpiration rate, plant nutritional values and water potential increased in plants when treated with Bs and Eb in synergy. Application of Bs and Eb significantly decreased the electrolytic leakage of cells in heat stressed thymus plants. The production of reactive oxygen species was significantly decreased while the synthesis of antioxidants increased with the application of Bs and Eb. Moreover, the application Bs and Eb increased the concentration of minerals nutrients in the plant body under heat stress. Our results suggested that application of Bs along with Eb decreased the effect of heat stress by maintaining nutrient supply and enhanced tolerance by increasing the production of photosynthetic pigments and antioxidant activity.


Asunto(s)
Thymus (Planta) , Antioxidantes/farmacología , Agricultura , Peso Corporal
16.
Heliyon ; 9(6): e16844, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37303529

RESUMEN

Background: In the field of medical education, students faced significant challenges during the COVID-19 pandemic. Abrupt alterations were made in the form of preventative precautions. Virtual classes replaced onsite classes, clinical placements were canceled, and social distance interventions prevented face-to-face practical sessions. The present study aimed to assess students' performance and satisfaction before and after the transition of a psychiatry course from onsite to entirely online during the COVID-19 pandemic. Methods: A retrospective, non-clinical, and non-interventional comparative educational research study included all students registered in the psychiatric course for the academic year 2020 (pre-pandemic/onsite) and 2021 (during the pandemic/online).To assess students' satisfaction, we utilized the National Commission for Academic Accreditation and Assessment (NCAAA) students' satisfaction survey used by the academic quality unit at KSU, College of Medicine.Satisfaction was assessed in six domains: course organization, learning resources, faculty experiences, clinical teaching, practical sessions, and overall satisfaction. The reliability of the questionnaire was measured using Cronbach's alpha test.To assess their performance, students' grades from both periods were obtained from the exam center. Results: A total of 193 medical students enrolled in the study; 80 received onsite learning and assessment, while another 113 received full online learning and assessment. The students' mean indicators of course satisfaction for the online courses exceeded their corresponding indicators significantly compared to the onsite courses. These indicators included students' satisfaction in terms of course organization, p < 0.001; medical learning resources, p < 0.050; faculty experience, p < 0.050; and overall course, p < 0.050. There were no significant differences regarding satisfaction in both practical sessions, p > 0.050, and clinical teaching, p > 0.050. The students' performance mean was significantly higher in the online (M = 91.76) compared to the onsite courses (M = 88.58) (p < 0.001), and the Cohen's D statistic showed there was a medium level of enhancement in students' overall grades (Cohen's d = 0.41). Conclusion: Students perceived the switch to online delivery methods very favorably. Students' satisfaction significantly improved regarding the themes of course organization, faculty experience, learning resources, and overall course satisfaction, while a similar level of adequate student satisfaction was maintained in terms of clinical teaching and practical sessions during the transition of the course to e-learning. In addition, the online course was associated with a trend toward higher students' grades. However, the assessment of the achievement of course learning outcomes and the maintenance of this positive impact warrants further investigation.

17.
Tissue Cell ; 83: 102127, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37331322

RESUMEN

It is well known that diabetes is associated with impairment of ovarian and testicular structure and function. Coriander (Coriandrum sativum L.) is identified as one of the oldest herbal plants valued for its nutritional and medicinal properties. This work is mainly designed to evaluate the possible modulatory role of dry coriander fruit extract against gonadal impairments associated with diabetes in female rats and their pups. Twenty-four pregnant rats were divided into four groups (n = 6): group I served as control, group II was administered daily with coriander fruit extract (250 mg/kg b.wt), group III was injected interaperitoneally with a single dose of streptozotocin (STZ) (80 mg/kg b.wt), and group IV was injected with single dose of STZ and post administered coriander extract. The experiment was conducted from the 4th day of gestation till the end of weaning. At the end of the experiment, the mothers' rats and their offspring were weighed, sacrificed, the ovaries from mothers as well as ovaries and testes from offspring were immediately excised, and processed for histological, immunohistochemical and evaluation of apoptosis and transforming growth factorß (TGF-ß). Also, blood samples were collected and analyzed to estimate the levels of sex hormones as well as antioxidants.In STZ induced diabetes in mother's rats and their offspring, the ovarian sections revealed severe histopathological signs included several atretic follicles, dilated and congested blood capillaries. Additionally, the testicular sections of offspring appeared with destructive seminiferous tubules. Immunohistochemically, the ovarian sections displayed weak to negative expression for calretinin marker however the testicular sections showed strong expression for Bax protein (apoptotic marker) and weak to negative expression for Ki67 protein (proliferative marker). Also, the mean % values of positively expressed cells for TGF-ß and annexin-v markers (late and early apoptosis indicator) were significantly elevated in the ovarian and testicular tissues of STZ-induced group of mother's rats and their pups if compared with control. Further results revealed that the levels of insulin, FSH, LH, estrogen, SOD and CAT were significantly decreased if compared with control however the levels of MDA and NO were significantly elevated. Administration of coriander fruit extract to diabetic rats successfully alleviated most of the altered histological, immunohistochemical, biochemical, and apoptotic changes induced by diabetes. Coriandrum sativum fruit extract has a powerful ameliorative role against STZ-induced diabetic gonadal dysfunctions in female rats and their offspring.


Asunto(s)
Coriandrum , Complicaciones de la Diabetes , Diabetes Mellitus Experimental , Masculino , Embarazo , Femenino , Ratas , Animales , Coriandrum/química , Diabetes Mellitus Experimental/tratamiento farmacológico , Extractos Vegetales/farmacología , Testículo , Factor de Crecimiento Transformador beta
18.
Adv Med Educ Pract ; 14: 453-461, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37168457

RESUMEN

Background: COVID-19 pandemic has resulted in a sudden shift to online education. PBL was one of the components that was transformed to online. The aim of the present study was to investigate the impact of the sudden shift to virtual PBL during COVID-19 pandemic in achieving the intended learning objectives of the PBL and to explore the students' perception of the virtual versus traditional PBL. Methods: This is a retrospective study that was conducted in the college of medicine, King Saud University. We compared the perception of third year students who participated in traditional face-to-face PBL in 2019-2020 and in the virtual PBL in 2020-2021. We compared the performance of the students in the traditional face-to-face and in virtual PBL. An online survey was distributed from October to December 2021. The survey contained 7 sections. Each section included several questions comparing virtual and traditional PBL in that aspect. Results: Out of 284 third year medical students, 124 students responded with a response rate of 43.66%. More than half of the students (n = 77, 63%) felt significantly motivated to actively participate in PBL sessions in a virtual learning environment, motivated to learn and support group work and gained critical thinking skills (mean = 3.54 ± 0.12 versus 3.59 ± 0.14, p < 0.001). The majority of students (n = 82, 66%) felt significantly more satisfied about their learning during the virtual PBL versus traditional PBL (mean = 3.48 ± 0.42 versus 3.91 ± 0.59, p < 0.001). There was no significant difference in the students' performance in traditional versus virtual PBL (mean = 4.77 ± 0.22 versus 4.79 ± 0.29, p = 0.2). Conclusion: The results of this study showed that students were significantly more satisfied with the experience in the virtual versus traditional PBL. Medical students' performances in virtual PBL were comparable to the traditional face-to-face approach.

19.
Pharmaceuticals (Basel) ; 16(5)2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37242441

RESUMEN

Ethanol-producing dysbiotic gut microbiota could accelerate the progress of non-alcoholic fatty liver disease (NAFLD). Metformin demonstrated some benefits in NAFLD. In the present study, we tested the ability of metformin to modify ethanol-producing gut bacterial strains and, consequently, retard the progress of NAFLD. This 12-week study included forty mice divided into four groups (n = 10); normal diet, Western diet, Western diet with intraperitoneal metformin, and Western diet with oral metformin. Oral metformin has a slight advantage over intraperitoneal metformin in ameliorating the Western diet-induced changes in liver function tests and serum levels of different cytokines (IL-1ß, IL-6, IL-17, and TNF-α). Changes in liver histology, fibrosis, lipid content, Ki67, and TNF-α were all corrected as well. Faecal ethanol contents were increased by the Western diet but did not improve after treatment with metformin although the numbers of ethanol-producing Klebsiella pneumoniae (K. pneumoniae) and Escherichia coli (E. coli) were decreased by oral metformin. Metformin did not affect bacterial ethanol production. It does not seem that modification of ethanol-producing K. pneumoniae and E. coli bacterial strains by metformin could have a significant impact on the therapeutic potentials of metformin in this experimental model of NAFLD.

20.
Sci Total Environ ; 882: 163614, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37086991

RESUMEN

Natural organic matter (NOM) is present in water matrix that serves as a drinking water source. This study examined the effect of low and high NOM concentrations on inactivation kinetics of a model RNA virus (MS2) and a model DNA virus (PhiX 174) by copper (Cu2+) and/or silver (Ag+) ions. Cu and Ag are increasingly applied in household water treatment (HHWT) systems. However, the impact of NOM on their inactivation kinetics remains elusive despite its importance for their application. The presence of NOM in water led to faster virus inactivation by Cu2+ but slower by Ag+. The fastest inactivation kinetics of MS2 (Kobs = 4.8 h-1) were observed by Cu in water containing high NOM (20 mg C/L). Meanwhile, for PhiX 174, the fastest inactivation kinetics (av. Kobs = 3.5 h-1) were observed by Cu and Ag synergism in water containing high NOM. Altogether, it can be concluded that the combination of Cu and Ag is promising as a virus disinfectant in treatment options allowing for multiple hours of residence time such as safe water storage tanks.


Asunto(s)
Cobre , Purificación del Agua , Plata , Inactivación de Virus , Iones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA