Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 358: 142184, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38697569

RESUMEN

Pollution from personal care products, such as UV-filters like avobenzone and nano-zinc oxide (nZnO), poses a growing threat to marine ecosystems. To better understand this hazard, especially for lesser-studied sediment-dwelling marine organisms, we investigated the physiological impacts of simultaneous exposure to nZnO and avobenzone on the lugworm Arenicola marina. Lugworms were exposed to nZnO, avobenzone, or their combination for three weeks. We assessed pollutant-induced metabolic changes by measuring key metabolic intermediates in the body wall and coelomic fluid, and oxidative stress by analyzing antioxidant levels and oxidative lesions in proteins and lipids of the body wall. Exposure to UV filters resulted in shifts in the concentrations of Krebs' cycle and urea cycle intermediates, as well as alterations in certain amino acids in the body wall and coelomic fluid of the lugworms. Pathway enrichment analyses revealed that nZnO induced more pronounced metabolic shifts compared to avobenzone or their combination. Exposure to avobenzone or nZnO alone prompted an increase in tissue antioxidant capacity, indicating a compensatory response to restore redox balance, which effectively prevented oxidative damage to proteins or lipids. However, co-exposure to nZnO and avobenzone suppressed superoxide dismutase and lead to accumulation of lipid peroxides and methionine sulfoxide, indicating oxidative stress and damage to lipids and proteins. Our findings highlight oxidative stress as a significant mechanism of toxicity for both nZnO and avobenzone, especially when combined, and underscores the importance of further investigating the fitness implications of oxidative stress induced by these common UV filters in benthic marine organisms.


Asunto(s)
Estrés Oxidativo , Poliquetos , Protectores Solares , Animales , Poliquetos/efectos de los fármacos , Poliquetos/fisiología , Poliquetos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Protectores Solares/toxicidad , Óxido de Zinc/toxicidad , Minerales , Antioxidantes/metabolismo , Contaminantes Químicos del Agua/toxicidad , Rayos Ultravioleta
2.
Environ Pollut ; 351: 124112, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38705446

RESUMEN

Aquatic environments face escalating challenges from multiple stressors like hypoxia and nanoparticle exposure, with impact of these combined stressors on mussel immunity being poorly understood. We investigated the individual and combined effects of short-term and long-term hypoxia and exposure to zinc oxide nanoparticles (nZnO) on immune system of the mussels (Mytilus edulis). Hemocyte functional traits (mortality, adhesion capacity, phagocytosis, lysosomal abundance, and oxidative burst), and transcript levels of immune-related genes involved in pathogen recognition (the Toll-like receptors, the complement system components, and the adaptor proteins MyD88) were assessed. Short-term hypoxia minimally affected hemocyte parameters, while prolonged exposure led to immunosuppression, impacting hemocyte abundance, viability, phagocytosis, and defensin gene expression. Under normoxia, nZnO stimulated immune responses of mussel hemocytes. However, combined nZnO and hypoxia induced more pronounced and rapid immunosuppression than hypoxia alone, indicating a synergistic interaction. nZnO exposure hindered immune parameter recovery during post-hypoxic reoxygenation, suggesting persistent impact. Opposing trends were observed in pathogen-sensing and pathogen-elimination mechanisms, with a positive correlation between pathogen-recognition system activation and hemocyte mortality. These findings underscore a complex relationship and potential conflict between pathogen-recognition ability, immune function, and cell survival in mussel hemocytes under hypoxia and nanopollutant stress, and emphasize the importance of considering multiple stressors in assessing the vulnerability and adaptability of mussel immune system under complex environmental conditions of anthropogenically modified coastal ecosystems.


Asunto(s)
Hemocitos , Óxido de Zinc , Animales , Óxido de Zinc/toxicidad , Hemocitos/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Mytilus edulis/efectos de los fármacos , Mytilus edulis/inmunología , Sistema Inmunológico/efectos de los fármacos , Nanopartículas/toxicidad , Fagocitosis/efectos de los fármacos
3.
Sci Rep ; 14(1): 9658, 2024 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671046

RESUMEN

Sessile benthic organisms like oysters inhabit the intertidal zone, subject to alternating hypoxia and reoxygenation (H/R) episodes during tidal movements, impacting respiratory chain activities and metabolome compositions. We investigated the effects of constant severe hypoxia (90 min at ~ 0% O2 ) followed by 10 min reoxygenation, and cyclic hypoxia (5 cycles of 15 min at ~ 0% O2 and 10 min reoxygenation) on isolated mitochondria from the gill and the digestive gland of Crassostrea gigas respiring on pyruvate, palmitate, or succinate. Constant hypoxia suppressed oxidative phosphorylation (OXPHOS), particularly during Complex I-linked substrates oxidation. It had no effect on mitochondrial reactive oxygen species (ROS) efflux but increased fractional electron leak (FEL). In mitochondria oxidizing Complex I substrates, exposure to cyclic hypoxia prompted a significant drop after the first H/R cycle. In contrast, succinate-driven respiration only showed significant decline after the third to fifth H/R cycle. ROS efflux saw little change during cyclic hypoxia regardless of the oxidized substrate, but Complex I-driven FEL tended to increase with each subsequent H/R cycle. These observations suggest that succinate may serve as a beneficial stress fuel under H/R conditions, aiding in the post-hypoxic recovery of oysters by reducing oxidative stress and facilitating rapid ATP re-synthesis. The impacts of constant and cyclic hypoxia of similar duration on mitochondrial respiration and oxidative lesions in the proteins were comparable indicating that the mitochondrial damage is mostly determined by the lack of oxygen and mitochondrial depolarization. The ROS efflux in the mitochondria of oysters was minimally affected by oxygen fluctuations indicating that tight regulation of ROS production may contribute to robust mitochondrial phenotype of oysters and protect against H/R induced stress.


Asunto(s)
Crassostrea , Mitocondrias , Oxidación-Reducción , Especies Reactivas de Oxígeno , Animales , Crassostrea/metabolismo , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Fosforilación Oxidativa , Oxígeno/metabolismo , Hipoxia/metabolismo , Branquias/metabolismo
4.
J Hazard Mater ; 468: 133801, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38377908

RESUMEN

Pollution with anthropogenic contaminants including antibiotics and nanoplastics leads to gradual deterioration of the marine environment, which threatens endangered species such as the horseshoe crab Tachypleus tridentatus. We assessed the potential toxic mechanisms of an antibiotic (norfloxacin, 0, 0.5, 5 µg/L) and polystyrene nanoparticles (104 particles/L) in T. tridentatus using biomarkers of tissue redox status, molting, and gut microbiota. Exposure to single and combined pollutants led to disturbance of redox balance during short-term (7 days) exposure indicated by elevated level of a lipid peroxidation product, malondialdehyde (MDA). After prolonged (14-21 days) exposure, compensatory upregulation of antioxidants (catalase and glutathione but not superoxide dismutase) was observed, and MDA levels returned to the baseline in most experimental exposures. Transcript levels of molting-related genes (ecdysone receptor, retinoic acid X alpha receptor and calmodulin A) and a molecular chaperone (cognate heat shock protein 70) showed weak evidence of response to polystyrene nanoparticles and norfloxacin. The gut microbiota T. tridentatus was altered by exposures to norfloxacin and polystyrene nanoparticles shown by elevated relative abundance of Bacteroidetes. At the functional level, evidence of suppression by norfloxacin and polystyrene nanoparticles was found in multiple intestinal microbiome pathways related to the genetic information processing, metabolism, organismal systems, and environmental information processing. Future studies are needed to assess the physiological and health consequences of microbiome dysbiosis caused by norfloxacin and polystyrene nanoparticles and assist the environmental risk assessment of these pollutants in the wild populations of the horseshoe crabs.


Asunto(s)
Contaminantes Ambientales , Cangrejos Herradura , Animales , Cangrejos Herradura/genética , Norfloxacino/toxicidad , Poliestirenos/toxicidad , Estrés Oxidativo
5.
Mar Pollut Bull ; 199: 115979, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38171167

RESUMEN

Coastal habitats are exposed to increasing pressure of nanopollutants commonly combined with warming due to the seasonal temperature cycles and global climate change. To investigate the toxicological effects of TiO2 nanoparticles (TiO2 NPs) and elevated temperature on the intestinal health of the mussels (Mytilus coruscus), the mussels were exposed to 0.1 mg/L TiO2 NPs with different crystal structures for 14 days at 20 °C and 28 °C, respectively. Compared to 20 °C, the agglomeration of TiO2 NPs was more serious at 28 °C. Exposure to TiO2 NPs led to elevated mortality of M. coruscus and modified the intestinal microbial community as shown by 16S rRNA sequence analysis. Exposure to TiO2 NPs changed the relative abundance of Bacteroidetes, Proteobacteria and Firmicutes. The relative abundances of putative mutualistic symbionts Tenericutes and Fusobacteria increased in the gut of M. coruscus exposed to anatase, which have contributed to the lower mortality in this group. LEfSe showed the combined stress of warming and TiO2 NPs increased the risk of M. coruscus being infected with potential pathogenic bacteria. This study emphasizes the toxicity differences between crystal structures of TiO2 NPs, and will provides an important reference for analyzing the physiological and ecological effects of nanomaterial pollution on bivalves under the background of global climate change.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Mytilus , Nanopartículas , Animales , Temperatura , ARN Ribosómico 16S , Nanopartículas/toxicidad
6.
Artículo en Inglés | MEDLINE | ID: mdl-37898360

RESUMEN

Broadcast-spawning marine mussels rely on high sperm motility for successful fertilization in the dynamic seawater environment. Mitochondria are typically considered the primary source of ATP generation via oxidative phosphorylation (OXPHOS); however, the ATP generation pathways of mussel sperm have not been fully characterized. To better understand the importance of both OXPHOS and glycolysis for mussel sperm function, we conducted experiments inhibiting these pathways in sperm from Mytilus edulis. Our results indicate that oligomycin, an inhibitor of the mitochondrial ATP synthase, immediately decreased sperm motility rate, velocity, and ATP content, while 2-deoxy-d-glucose, a glycolysis inhibitor, had no effect. The OXPHOS inhibitor rotenone also partially reduced sperm motility rate and velocity. Interestingly, no evidence was found for the inhibitors' effects on the content of energy-rich compounds (lipids, carbohydrates, and proteins) in the mussels' sperm, indicating only modest energy demand to fuel sperm motility. Based on these findings, we conclude that OXPHOS is the primary energy source for sperm motility in marine mussels. Our study sheds light on the intricacies of mussel sperm physiology and highlights the importance of understanding the energy requirements for successful fertilization in broadcast-spawning marine invertebrates.


Asunto(s)
Mytilus edulis , Mytilus , Masculino , Animales , Fosforilación Oxidativa , Motilidad Espermática/fisiología , Mytilus edulis/metabolismo , Semen/metabolismo , Glucólisis/fisiología , Espermatozoides , Adenosina Trifosfato/metabolismo , Mytilus/metabolismo
7.
Environ Pollut ; 341: 122999, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37995954

RESUMEN

Pollution with complex mixtures of contaminants including micro- and nano-plastics (MNPs) and organic pollutants like polycyclic aromatic hydrocarbons (PAH) poses a major threat to coastal marine ecosystems. Toxic mechanisms of contaminant mixtures are not well understood in marine organisms. We studied the effects of single and combined exposures to polycyclic aromatic hydrocarbon phenanthrene (Phe) and MNPs mixture with sizes of 70 nm, 5 µm and 100 µm on the immune health and oxidative stress parameters in the thick-shell mussel Mytilus coruscus. Immune cells (hemocytes) were more sensitive to the pollutant-induced oxidative stress than the gills. In hemocytes of co-exposed mussels, elevated mortality, lower lysosomal content, high production of reactive oxygen species (ROS) and decrease mitochondrial were found. Disparate responses of antioxidant enzymes in the hemolymph (e.g. increased superoxide dismutase (SOD) activity without a corresponding increase in catalase (CAT) in Phe exposures and an increase in CAT without a change in SOD in MNPs exposures) suggests misbalance of the antioxidant defense in the pollutant-exposed mussels. Gill lacked pronounced oxidative stress response showing a decline in ROS and antioxidant levels. Tissue-specific single and combined effects of Phe and MNPs suggest variation in bioavailability and/or different sensitivity to these pollutants in the studied tissues. Notably, the combined effects of MNPs and Phe were additive or antagonistic, showing that MNPs do not enhance and occasionally mitigate the toxic effects of Phe on the hemocytes and the gills of the mussels. Overall, our study sheds light on the impact of long-term exposure to MNPs and Phe mixtures on mussels, showing high sensitivity of the immune system and modulation of the Phe toxicity by MNPs co-exposure. These findings that may have implications for understanding the impacts of combined PAH and MNPs pollution on the health of mussel populations from polluted coastal habitats.


Asunto(s)
Mytilus , Fenantrenos , Contaminantes Químicos del Agua , Animales , Antioxidantes/farmacología , Mytilus/fisiología , Microplásticos , Especies Reactivas de Oxígeno , Ecosistema , Contaminantes Químicos del Agua/análisis , Plásticos/farmacología , Superóxido Dismutasa , Fenantrenos/toxicidad
8.
Front Physiol ; 14: 1244314, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37841313

RESUMEN

Introduction: Temperature affects organisms' metabolism and ecological performance. Owing to climate change, sea warming constituting a severe source of environmental stress for marine organisms, since it increases at alarming rates. Rapid warming can exceed resilience of marine organisms leading to fitness loss and mortality. However, organisms can improve their thermal tolerance when briefly exposed to sublethal thermal stress (heat hardening), thus generating heat tolerant phenotypes. Methods: We investigated the "stress memory" effect caused by heat hardening on M. galloprovincialis metabolite profile of in order to identify the underlying biochemical mechanisms, which enhance mussels' thermal tolerance. Results: The heat hardening led to accumulation of amino acids (e.g., leucine, isoleucine and valine), including osmolytes and cytoprotective agents with antioxidant and anti-inflammatory properties that can contribute to thermal protection of the mussels. Moreover, proteolysis was inhibited and protein turnover regulated by the heat hardening. Heat stress alters the metabolic profile of heat stressed mussels, benefiting the heat-hardened individuals in increasing their heat tolerance compared to the non-heat-hardened ones. Discussion: These findings provide new insights in the metabolic mechanisms that may reinforce mussels' tolerance against thermal stress providing both natural protection and potential manipulative tools (e.g., in aquaculture) against the devastating climate change effects on marine organisms.

9.
Mar Environ Res ; 192: 106231, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37862760

RESUMEN

Life on tidal coasts presents physiological major challenges for sessile species. Fluctuations in oxygen and temperature can affect bioenergetics and modulate metabolism and redox balance, but their combined effects are not well understood. We investigated the effects of intermittent hypoxia (12h/12h) in combination with different temperature regimes (normal (15 °C), elevated (30 °C) and fluctuating (15 °C water/30 °C air)) on the Pacific oyster Crassostrea (Magallana) gigas. Fluctuating temperature led to energetic costly metabolic rearrangements and accumulation of proteins in oyster tissues. Elevated temperature led to high (60%) mortality and oxidative damage in survivors. Normal temperature had no major negative effects but caused metabolic shifts. Our study shows high plasticity of oyster metabolism in response to oxygen and temperature fluctuations and indicates that metabolic adjustments to oxygen deficiency are strongly modulated by the ambient temperature. Co-exposure to constant elevated temperature and intermittent hypoxia demonstrates the limits of this adaptive metabolic plasticity.


Asunto(s)
Crassostrea , Animales , Temperatura , Crassostrea/fisiología , Inmersión , Metabolismo Energético , Oxígeno/metabolismo , Hipoxia/metabolismo
10.
Biol Open ; 12(9)2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37670684

RESUMEN

Oxygen fluctuations are common in freshwater habitats and aquaculture and can impact ecologically and economically important species of fish like cyprinids. To gain insight into the physiological responses to oxygen fluctuations in two common cyprinid species, we evaluated the impact of short-term intermittent hypoxia on oxidative stress and metabolic parameters (including levels of prooxidants and oxidative lesions, antioxidants, mitochondrial enzyme activities, mitochondrial swelling, markers of apoptosis, autophagy and cytotoxicity) in silver carp Hypophthalmichthys molitrix and gibel carp Carassius gibelio. During hypoxia, gibel carp showed higher baseline levels of antioxidants and less pronounced changes in oxidative and metabolic biomarkers in the tissues than silver carp. Reoxygenation led to a strong shift in metabolic and redox-related parameters and tissue damage, indicating high cost of post-hypoxic recovery in both species. Species-specific differences were more strongly associated with oxidative stress status, whereas metabolic indices and nitrosative stress parameters were more relevant to the response to hypoxia-reoxygenation. Overall, regulation of energy metabolism appears more critical than the regulation of antioxidants in the response to oxygen deprivation in the studied species. Further research is needed to establish whether prioritizing metabolic over redox regulation during hypoxia-reoxygenation stress is common in freshwater cyprinids.


Asunto(s)
Antioxidantes , Cyprinidae , Animales , Estrés Oxidativo , Hipoxia , Oxígeno
11.
J Exp Biol ; 226(15)2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37470191

RESUMEN

Coastal environments commonly experience fluctuations in salinity and hypoxia-reoxygenation (H/R) stress that can negatively affect mitochondrial functions of marine organisms. Although intertidal bivalves are adapted to these conditions, the mechanisms that sustain mitochondrial integrity and function are not well understood. We determined the rates of respiration and reactive oxygen species (ROS) efflux in the mitochondria of oysters, Crassostrea gigas, acclimated to high (33 psu) or low (15 psu) salinity, and exposed to either normoxic conditions (control; 21% O2) or short-term hypoxia (24 h at <0.01% O2) and subsequent reoxygenation (1.5 h at 21% O2). Further, we exposed isolated mitochondria to anoxia in vitro to assess their ability to recover from acute (∼10 min) oxygen deficiency (<0.01% O2). Our results showed that mitochondria of oysters acclimated to high or low salinity did not show severe damage and dysfunction during H/R stress, consistent with the hypoxia tolerance of C. gigas. However, acclimation to low salinity led to improved mitochondrial performance and plasticity, indicating that 15 psu might be closer to the metabolic optimum of C. gigas than 33 psu. Thus, acclimation to low salinity increased mitochondrial oxidative phosphorylation rate and coupling efficiency and stimulated mitochondrial respiration after acute H/R stress. However, elevated ROS efflux in the mitochondria of low-salinity-acclimated oysters after acute H/R stress indicates a possible trade-off of higher respiration. The high plasticity and stress tolerance of C. gigas mitochondria may contribute to the success of this invasive species and facilitate its further expansion into brackish regions such as the Baltic Sea.


Asunto(s)
Crassostrea , Animales , Especies Reactivas de Oxígeno/metabolismo , Crassostrea/metabolismo , Salinidad , Mitocondrias/metabolismo , Hipoxia
12.
Sci Total Environ ; 893: 164836, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37321498

RESUMEN

Nano-TiO2 can act as a vector to organic compounds, such as pentachlorophenol (PCP) posing a potential threat to the marine ecosystems. Studies showed that nano pollutant toxicity can be modulated by abiotic factors, but little is known about the potential influence of biotic stressors (such as predators) on the physiological responses to pollutants in marine organisms. We explored the effects of n-TiO2 and PCP on the mussel Mytilus coruscus in the presence of its natural predator, the swimming crab Portunus trituberculatus. Exposure to n-TiO2, PCP, and predation risk showed interactive effects on antioxidant and immune parameters of the mussels. Elevated activities of catalase (CAT), glutathione peroxidase (GPX), acid phosphatase (ACP) and alkaline phosphatase (AKP), suppressed activity of superoxide dismutase (SOD), lower levels of glutathione (GSH) and increased malondialdehyde (MDA) levels indicated dysregulation of the antioxidant system and immune stress induced by single PCP or n-TiO2 exposure. Integrated biomarker (IBR) response values showed the effect of PCP was concentration dependent. Of the two used n-TiO2 sizes (25 and 100 nm), larger particles induced higher antioxidant and immune disturbances indicating higher toxicity possibly due to higher bioavailability. Compared to single PCP exposure, the combination of n-TiO2 and PCP enhanced the imbalance of SOD/CAT and GSH/GPX and led to elevated oxidative lesions and activation of immune-related enzymes. Overall, the combined impacts of pollutants and biotic stress exhibited a greater magnitude of adverse effects on antioxidant defense and immune parameters in mussels. The toxicological effects of PCP were exacerbated in the presence of n-TiO2, and the deleterious impact of these stressors was further amplified under predator-induced risk after prolonged (28 days) exposure. However, the underlying physiological regulatory mechanisms governing the interplay of these stressors and predatory cues on mussels remain elusive, warranting further investigation.


Asunto(s)
Contaminantes Ambientales , Mytilus , Pentaclorofenol , Contaminantes Químicos del Agua , Animales , Antioxidantes/metabolismo , Pentaclorofenol/toxicidad , Ecosistema , Conducta Predatoria , Mytilus/fisiología , Glutatión , Superóxido Dismutasa/metabolismo , Inmunidad , Estrés Oxidativo , Contaminantes Químicos del Agua/toxicidad
13.
Environ Pollut ; 332: 121964, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37286024

RESUMEN

Sediment contamination and seawater warming are two major stressors to macrobenthos in estuaries. However, little is known about their combined effects on infaunal organisms. Here we investigated the responses of an estuarine polychaete Hediste diversicolor to metal-contaminated sediment and increased temperature. Ragworms were exposed to sediments spiked with 10 and 20 mg kg-1 of copper at 12 and 20 °C for three weeks. No considerable changes were observed in the expression of genes related to copper homeostasis and in the accumulation of oxidative stress damage. Dicarbonyl stress was attenuated by warming exposure. Whole-body energy reserves in the form of carbohydrates, lipids and proteins were little affected, but the energy consumption rate increased with copper exposure and elevated temperature, indicating higher basal maintenance costs of ragworms. The combined effects of copper and warming exposures were mostly additive, with copper being a weak stressor and warming a more potent stressor. These results were replicable, as confirmed by two independent experiments of similar settings conducted at two different months of the year. This study suggests the higher sensitivity of energy-related biomarkers and the need to search for more conserved molecular markers of metal exposure in H. diversicolor.


Asunto(s)
Poliquetos , Contaminantes Químicos del Agua , Animales , Cobre/metabolismo , Temperatura , Agua de Mar , Estrés Oxidativo , Poliquetos/metabolismo , Contaminantes Químicos del Agua/metabolismo , Sedimentos Geológicos
14.
Sci Total Environ ; 881: 163499, 2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37062322

RESUMEN

Nano­titanium dioxide (nTiO2) is a widely used nanomaterial posing potential ecological risk for marine ecosystems that might be enhanced by elevated temperatures such as expected during climate change. nTiO2 may affect benthic filter feeders like mussels through waterborne exposures and via food chain due to the adsorption on/in algae. Mussel byssus are proteinaceous fibers secreted by byssal glands of the mussels for attachment. Byssus production and mechanical properties are sensitive to environmental stressors but the combined effects of warming and nTiO2 on byssus performance of mussels are unclear hampering our understanding of the predation and dislodgement risk of mussels under the multiple stressor scenarios. We explored the effects of a short-term (14-day) single and combined exposures to warming (28 °C) and 100 µg L-1 nTiO2 (including food co-exposure) on the byssus performance of the thick shell mussel Mytilus coruscus. The mechanical strength (measured as the breaking force) of the byssal threads was impaired by warming and nTiO2 (including food co-exposure), but the number and length of the byssal threads were increased. The mRNA expression levels of mussel foot proteins (mfp-3, mfp-5) and pre-collagens (preCOL-D, preCOL-P, preCOL-NG) were up-regulated to varying degrees, with the strongest effects induced by warming. This indicates that the physiological and molecular mechanisms of byssus secretion are plastic. However, downregulation of the mRNA expression of preCOL-D and preCOL-P under the combined warming and nTiO2 exposures indicate the limits of these plasticity mechanisms and suggest that the attachment ability and survival of the mussels may be impaired if the pollution or temperature conditions further deteriorate.


Asunto(s)
Ecosistema , Mytilus , Animales , Exposición Dietética , Mytilus/fisiología , Proteínas , Océanos y Mares , ARN Mensajero
15.
Int Urogynecol J ; 34(9): 2163-2169, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37036470

RESUMEN

INTRODUCTION AND HYPOTHESIS: Following the publication of the National Institute for Health and Care Excellence guidelines on the management of pelvic floor dysfunction, articles speculating on the benefits and costs of local and regional multi-disciplinary teams (MDTs) have been in circulation. To date, there has been no formal assessment of the impact of a regional MDT on the management of women with complex urogynaecological conditions. METHODS: Throughout the existence of the West of Scotland (WoS) Regional Urogynaecology MDT, from May 2010 to December 2015, 60 patients with complex Urogynaecology conditions were discussed. Data were collected on presenting condition, pre- and post-MDT management plans, and treatment outcomes. RESULTS: The average age was 52.6 years (range 21-91 years). All meetings had at least 1 urogynaecologist, 1 gynaecologist, 1 reconstructive female urologists, 1 urodynamicist and, on average, 3 continence nurses, 4 physiotherapists, as well as 1 clinical librarian to conduct a literature search and 1 secretary for administrative support. The majority of the referrals dealt with urinary incontinence (n=34) and 8 patients presented with mesh complications alongside other pelvic floor disorders. The MDT made changes to the original referrer's management plan in at least 25 (41.7%) patient presentations. Twenty-two out of all the patients discussed (36.7%) were reported as cured or improved in their condition following the MDT-recommended management. CONCLUSION: The WoS Regional Urogynaecology MDT had a positive impact on the management of women presenting with complex condition(s). Cross-sharing of resources between hospitals within the region provided a wider range of management plans, better tailored to each individual.


Asunto(s)
Procedimientos de Cirugía Plástica , Incontinencia Urinaria , Humanos , Femenino , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Incontinencia Urinaria/terapia , Derivación y Consulta , Escocia , Grupo de Atención al Paciente
16.
Aquat Toxicol ; 256: 106422, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36773443

RESUMEN

The environmental occurrence of nanoplastics (NPs) is now evident but their long-term impacts on organisms are unclear, limiting ecological and health risk assessment. We hypothesized that chronic exposure to low particle concentrations of NPs can result in gut-associated toxicity, and subsequently affect survival of fish. Japanese medaka Oryzias latipes were exposed to polystyrene NPs (diameter 100 nm; 0, 10, 104, and 106 items/L) for 3 months, and histopathology, digestive and antioxidant enzymes, immunity, intestinal permeability, gut microbiota, and mortality were assessed. NP exposures caused intestinal lesions, and increased intestinal permeability of the gut. The trypsin, lipase, and chymotrypsin activities were increased, but the amylase activity was decreased. Oxidative damage was reflected by the decreased superoxide dismutase and alkaline phosphatase and increased malondialdehyde, catalase, and lysozyme. The integrated biomarkers response index values of all NP-exposed medaka were significantly increased compared to the control group. Moreover, NP exposures resulted in a decrease of diversity and changed the intestinal microbiota composition. Our results provide new evidence that long-term NPs exposure impaired the health of fish at extremely low particle concentrations, suggesting the need for long-term toxicological studies resembling environmental particle concentrations when assessing the risk of NPs.


Asunto(s)
Oryzias , Contaminantes Químicos del Agua , Animales , Oryzias/fisiología , Microplásticos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Antioxidantes/metabolismo , Estrés Oxidativo
17.
Acta Physiol (Oxf) ; 237(4): e13950, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36790303

RESUMEN

Temperature is a key abiotic factor affecting ecology, biogeography, and evolution of species. Alterations of energy metabolism play an important role in adaptations and plastic responses to temperature shifts on different time scales. Mitochondrial metabolism affects cellular bioenergetics and redox balance making these organelles an important determinant of organismal performances such as growth, locomotion, or development. Here I analyze the impacts of environmental temperature on the mitochondrial functions (including oxidative phosphorylation, proton leak, production of reactive oxygen species(ROS), and ATP synthesis) of ectotherms and discuss the mechanisms underlying negative shifts in the mitochondrial energy economy caused by supraoptimal temperatures. Owing to the differences in the thermal sensitivity of different mitochondrial processes, elevated temperatures (beyond the species- and population-specific optimal range) cause reallocation of the electron flux and the protonmotive force (Δp) in a way that decreases ATP synthesis efficiency, elevates the relative cost of the mitochondrial maintenance, causes excessive production of ROS and raises energy cost for antioxidant defense. These shifts in the mitochondrial energy economy might have negative consequences for the organismal fitness traits such as the thermal tolerance or growth. Correlation between the thermal sensitivity indices of the mitochondria and the whole organism indicate that these traits experience similar selective pressures but further investigations are needed to establish whether there is a cause-effect relationship between the mitochondrial failure and loss of organismal performance during temperature change.


Asunto(s)
Calentamiento Global , Mitocondrias , Especies Reactivas de Oxígeno/metabolismo , Mitocondrias/metabolismo , Metabolismo Energético/fisiología , Adenosina Trifosfato/metabolismo
18.
Sci Total Environ ; 858(Pt 2): 160039, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36356734

RESUMEN

Nanopollutants such as nZnO gain importance as contaminants of emerging concern due to their high production volume and potential toxicity. Coastal sediments serve as sinks for nanoparticles but the impacts and the toxicity mechanisms of nZnO in sediment-dwelling organisms are not well understood. We used metabolomics to assess the effects of nZnO-contaminated sediments on a benthic ecosystem engineer, an infaunal polychaete Arenicola marina. The worms were exposed to unpolluted (control) sediment or to the sediment spiked with 100 or 1000 µg Zn kg-1 of nZnO. Oxidative lesions (lipid peroxidation and protein carbonyls) were measured in the body wall as traditional biomarkers of nanopollutant toxicity. Metabolite profiles (including amino acids, tricarboxylic acid (TCA) cycle and urea cycle intermediates) were determined in the body wall and the coelomic fluid. Exposure to nZnO altered metabolism of the lugworms via suppression of the metabolism of gluconeogenic and aromatic amino acids, and altered the TCA cycle likely via suppression of fumarase activity. These metabolic changes may negatively affect carbohydrate metabolism and energy storage, and impair hormonal signaling in the worms. The total pool of free amino acids was depleted in nZnO exposures with potentially negative consequences for osmoregulation and protein synthesis. Exposure to nZnO led to accumulation of the lipid peroxidation products demonstrating high susceptibility of the cellular membranes to nZnO-induced oxidative stress. The nZnO-induced shifts in the metabolite profiles were more pronounced in the coelomic fluid than the body wall. This finding emphasizes the important metabolic role of the coelomic fluid as well as its suitability for assessing the toxic impacts of nZnO and other metabolic disruptors. The metabolic disruptions caused by environmentally relevant concentrations of nZnO can have negative effects on the organisms' fitness impairing growth and reproduction of the populations of marine bioturbators like the lugworms in nanoparticle-polluted sediments.


Asunto(s)
Nanopartículas , Poliquetos , Contaminantes Químicos del Agua , Óxido de Zinc , Animales , Ecosistema , Contaminantes Químicos del Agua/análisis , Nanopartículas/toxicidad , Aminoácidos/metabolismo , Óxido de Zinc/toxicidad
19.
Sci Total Environ ; 858(Pt 3): 160090, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36379341

RESUMEN

Ocean acidification has become a major ecological and environmental problem in the world, whereas the impact mechanism of ocean acidification in marine bivalves is not fully understood. Cellular energy allocation (CEA) approach and high-coverage metabolomic techniques were used to investigate the acidification effects on the energy metabolism of mussels. The thick shell mussels Mytilus coruscus were exposed to seawater pH 8.1 (control) and pH 7.7 (acidification) for 14 days and allowed to recover at pH 8.1 for 7 days. The levels of carbohydrates, lipids and proteins significantly decreased in the digestive glands of the mussels exposed to acidification. The 14-day acidification exposure increased the energy demands of mussels, resulting in increased electron transport system (ETS) activity and decreased cellular energy allocation (CEA). Significant carry-over effects were observed on all cellular energy parameters except the concentration of carbohydrates and cellular energy demand (Ec) after 7 days of recovery. Metabolomic analysis showed that acidification affected the phenylalanine, tyrosine and tryptophan biosynthesis, taurine and hypotaurine metabolism, and glycine, serine and threonine metabolism. Correlation analysis showed that mussel cell energy parameters (carbohydrates, lipids, proteins, CEA) were negatively/positively correlated with certain differentially abundant metabolites. Overall, the integrated biochemical and metabolomics analyses demonstrated the negative effects of acidification on energy metabolism at the cellular level and implicated the alteration of biosynthesis and metabolism of amino acids as a mechanism of metabolic perturbation caused by acidification in mussels.


Asunto(s)
Metabolómica , Agua de Mar , Concentración de Iones de Hidrógeno , Metabolismo Energético
20.
Integr Environ Assess Manag ; 19(2): 302-311, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36000445

RESUMEN

The multiple biomarker approach is an effective tool to study the responses of aquatic organisms to contaminants. Summarizing multiple biomarker responses for facilitated communication of research findings has been aided by some integrated indices. Here we explain how existing integrated indices were built and why they turn out to be the wheel reinvented. We discuss the role of integrated indices in ecological risk assessment and recommend some changes in summarizing multiple biomarker results. Integr Environ Assess Manag 2023;19:302-311. © 2022 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Asunto(s)
Ecotoxicología , Monitoreo del Ambiente , Monitoreo del Ambiente/métodos , Medición de Riesgo/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA