Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 14163, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898073

RESUMEN

Brain-inspired resistive random-access memory (RRAM) technology is anticipated to outperform conventional flash memory technology due to its performance, high aerial density, low power consumption, and cost. For RRAM devices, metal oxides are exceedingly investigated as resistive switching (RS) materials. Among different oxides, tin oxide (SnOx) received minimal attention, although it possesses excellent electronic properties. Herein, we demonstrate compliance-free, analog resistive switching behavior with several stable states in Ti/Pt/SnOx/Pt RRAM devices. The compliance-free nature might be due to the high internal resistance of SnOx films. The resistance of the films was modulated by varying Ar/O2 ratio during the sputtering process. The I-V characteristics revealed a well-expressed high resistance state (HRS) and low resistance states (LRS) with bipolar memristive switching mechanism. By varying the pulse amplitude and width, different resistance states have been achieved, indicating the analog switching characteristics of the device. Furthermore, the devices show excellent retention for eleven states over 1000 s with an endurance of > 100 cycles.

2.
RSC Adv ; 12(42): 27082-27093, 2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36276039

RESUMEN

High-performance porous 3D graphene-based supercapacitors are one of the most promising and challenging directions for future energy technologies. Microporous graphene has been synthesized by the pyrolysis method. The fabricated lightweight graphene with a few layers (FLG) has an ultra-high surface area of 2266 m2 g-1 along with various-sized micropores. The defect-induced morphology and pore size distribution of the fabricated graphene are examined, and the results show that the micropores vary from 0.85 to 1.9 nm and the 1.02 nm pores contribute 30% of the total surface area. The electrochemical behaviour of the electrode fabricated using this graphene has been studied with various concentrations of the KOH electrolyte. The highest specific capacitance of the graphene electrode of 540 F g-1 (close to the theoretical value, ∼550 F g-1) can be achieved by using the 1 M KOH electrolyte. This high specific capacitance contribution involves the counter ion adsorption, co-ion desorption, and ion permutation mechanisms. The formation of a Helmholtz layer, as well as the diffusion of the electrolyte ions, confirms this phenomenon. The symmetrical solid-state supercapacitor fabricated with the graphene electrodes and PVA-KOH gel as the electrolyte exhibits excellent energy and power densities of 18 W h kg-1 and 10.2 kW kg-1, respectively. This supercapacitor also shows a superior 100% coulombic efficiency after 6000 cycles.

3.
Sensors (Basel) ; 22(1)2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-35009930

RESUMEN

Nitric oxide (NO) is a toxic gas, which is dangerous for human health and causes many respiratory infections, poisoning, and lung damage. In this work, we have successfully grown ZnO nanorod film on annealed ZnO seed layer in different ambient temperatures, and the morphology of the nanorods sensing layer that affects the gas sensing response to nitric oxide (NO) gas were investigated. To acknowledge the effect of annealing treatment, the devices were fabricated with annealed seed layers in air and argon ambient at 300 °C and 500 °C for 1 h. To simulate a vertical device structure, a silver nanowire electrode covered in ZnO nanorod film was placed onto the hydrothermal grown ZnO nanorod film. We found that annealing treatment changes the seed layer's grain size and defect concentration and is responsible for this phenomenon. The I-V and gas sensing characteristics were dependent on the oxygen defects concentration and porosity of nanorods to react with the target gas. The resulting as-deposited ZnO seed layer shows better sensing response than that annealed in an air and argon environment due to the nanorod morphology and variation in oxygen defect concentration. At room temperature, the devices show good sensing response to NO concentration of 10 ppb and up to 100 ppb. Shortly, these results can be beneficial in the NO breath detection for patients with chronic inflammatory airway disease, such as asthma.


Asunto(s)
Nanotubos , Óxido de Zinc , Electrodos , Humanos , Óxido Nítrico , Plata
4.
Nanotechnology ; 31(26): 26LT01, 2020 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-32168495

RESUMEN

Surface oxidation employing neutral oxygen irradiation significantly improves the switching and synaptic performance of ZnO-based transparent memristor devices. The endurance of the as-irradiated device is increased by 100 times, and the operating current can be lowered by 10 times as compared with the as-deposited device. Moreover, the performance-enhanced device has an excellent analog behavior that can exhibit 3 bits per cell nonvolatile multistate characteristics and perform 15 stable epochs of synaptic operations with highly linear weight updates. A simulated artificial neural network comprising 1600 synapses confirms the superiority of the enhanced device in processing a 40 × 40 pixels grayscale image. The irradiation effectively decreases the concentration of oxygen vacancy donor defects and promotes oxygen interstitial acceptor defects on the surface of the ZnO films, which consequently modulate the redox process during rupture and rejuvenation of the filament. This work not only proposes the potential of ZnO-based memristor devices for high-density invisible data storage and in-memory computing application but also offers valuable insight in designing high-performance memristor devices, regardless of the oxide system used, by taking advantage of our neutral oxygen irradiation technique.

5.
Heliyon ; 6(12): e05813, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33426329

RESUMEN

To date, the search for creating stable ferrofluids with excellent properties for biomedical application is one of the challenging scientific and practical investigations. In this study, novel Fe3O4/Ag nanohybrid ferrofluids from iron sand were synthesized using a double-layer method. The Fe3O4/Ag nanocomposites exhibited stable crystallite sizes of 11.8 12.1 nm and 36.8-37.2 nm for Fe3O4 and Ag, respectively. The lattice parameters of the spinel structure Fe3O4 and face-centered cubic Ag were respectively 8.344 Å and 4.091 Å. With increasing Ag amount, the crystallite phase of Ag in the nanocomposites increased from 40.2% to 77.2%. The XPS results confirmed that Fe3O4/Ag nanocomposites were successfully prepared, where Fe3O4 mixed well with Ag via strong ionic bonding. The FTIR results confirmed the presence of Fe3O4/Ag, oleic acid, and dimethyl sulfoxide as the filler, first layer, and second layer, respectively. The as-prepared ferrofluids exhibited superparamagnetic behavior, where the saturation magnetization decreased with increasing Ag content. The Fe3O4/Ag nanohybrid ferrofluids exhibited excellent antimicrobial performance against Bacillus subtilis, Staphylococcus aureus, Escherichia coli, and Candida albicans. More importantly, the Fe3O4/Ag nanohybrid ferrofluids decreased the progression of liver fibrosis-related inflammation and fibrogenic activity on hepatic stellate cells.

6.
Sci Rep ; 9(1): 16852, 2019 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-31728012

RESUMEN

In this study, the effect of oxygen vacancy in the CoMn2O4 on pseudocapacitive characteristics was examined, and two tetragonal CoMn2O4 spinel compounds with different oxygen vacancy concentrations and morphologies were synthesized by controlling the mixing sequence of the Co and Mn precursors. The mixing sequence was changed; thus, morphologies were changed from spherical nanoparticles to nanoflakes and oxygen vacancies were increased. Electrochemical studies have revealed that tetragonal CoMn2O4 spinels with a higher number of oxygen vacancies exhibit a higher specific capacitance of 1709 F g-1 than those with a lower number of oxygen vacancies, which have a higher specific capacitance of 990 F g-1. Oxygen vacancies create an active site for oxygen ion intercalation. Therefore, oxidation-reduction reactions occur because of the diffusion of oxygen ions at octahedral/tetrahedral crystal edges. The solid-state asymmetric pseudocapacitor exhibits a maximum energy density of 32 Wh-kg-1 and an excellent cyclic stability of nearly 100%.

7.
Nanotechnology ; 30(44): 445205, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31341103

RESUMEN

Artificial synapse having good linearity is crucial to achieve an efficient learning process in neuromorphic computing. It is found that the synaptic linearity can be enhanced by engineering the doping region across the switching layer. The nonlinearity of potentiation and depression of the pure device is 36% and 91%, respectively; meanwhile, the nonlinearity after doping can be suppressed to be 22% (potentiation) and 60% (depression). Henceforth, the learning accuracy of the doped device is 91% with only 13 iterations; meanwhile, the pure device is 78%. A detailed conduction mechanism to understand this phenomenon is proposed.

8.
Materials (Basel) ; 12(13)2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31266233

RESUMEN

The extract of honeycomb waste was studied as a corrosion inhibitor on 304 stainless steel in H2SO4 solutions. The honeycomb waste was obtained from beekeeping at Lawang-Malang, East Java, Indonesia. Electrochemical and scanning electron microscopy methods were used to investigate the performance of the corrosion inhibition process. The inhibition efficiency of the inhibitor (2000 mg/L) reached 97.29% in 0.5 M H2SO4 and decreased with the acid concentration. Kinetic parameters were calculated to explain the effect of acid concentration on the inhibition process. The study on the adsorption behavior of the extracts followed the Frumkin isotherm model. The adsorption of the inhibitor on the 304 stainless steel surface was confirmed by the negative and lower values of Gibbs free energy. The obtained scanning electron microscopy (SEM) images were confirmed by comparing the surface of the specimens with and without inhibitor after corroding for one week. The results indicated that the extract acted as a good inhibitor for 304 stainless steel in acid corrosion.

9.
Nanoscale Res Lett ; 13(1): 327, 2018 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-30341697

RESUMEN

The impact of peroxide surface treatment on the resistive switching characteristics of zinc peroxide (ZnO2)-based programmable metallization cell (PMC) devices is investigated. The peroxide treatment results in a ZnO hexagonal to ZnO2 cubic phase transformation; however, an excessive treatment results in crystalline decomposition. The chemically synthesized ZnO2 promotes the occurrence of switching behavior in Cu/ZnO2/ZnO/ITO with much lower operation current as compared to the Cu/ZnO/ITO (control device). However, the switching stability degrades as performing the peroxide treatment for a longer time. We suggest that the microstructure of the ZnO2 is responsible for this degradation behavior and fine tuning on ZnO2 properties, which is necessary to achieve proper switching characteristics in ZnO2-based PMC devices.

10.
Nanotechnology ; 28(38): 38LT02, 2017 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-28721944

RESUMEN

We explore the use of cubic-zinc peroxide (ZnO2) as a switching material for electrochemical metallization memory (ECM) cell. The ZnO2 was synthesized with a simple peroxide surface treatment. Devices made without surface treatment exhibits a high leakage current due to the self-doped nature of the hexagonal-ZnO material. Thus, its switching behavior can only be observed when a very high current compliance is employed. The synthetic ZnO2 layer provides a sufficient resistivity to the Cu/ZnO2/ZnO/ITO devices. The high resistivity of ZnO2 encourages the formation of a conducting bridge to activate the switching behavior at a lower operation current. Volatile and non-volatile switching behaviors with sufficient endurance and an adequate memory window are observed in the surface-treated devices. The room temperature retention of more than 104 s confirms the non-volatility behavior of the devices. In addition, our proposed device structure is able to work at a lower operation current among other reported ZnO-based ECM cells.

11.
Nanoscale Res Lett ; 11(1): 368, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27541816

RESUMEN

In the advancement of the semiconductor device technology, ZnO could be a prospective alternative than the other metal oxides for its versatility and huge applications in different aspects. In this review, a thorough overview on ZnO for the application of resistive switching memory (RRAM) devices has been conducted. Various efforts that have been made to investigate and modulate the switching characteristics of ZnO-based switching memory devices are discussed. The use of ZnO layer in different structure, the different types of filament formation, and the different types of switching including complementary switching are reported. By considering the huge interest of transparent devices, this review gives the concrete overview of the present status and prospects of transparent RRAM devices based on ZnO. ZnO-based RRAM can be used for flexible memory devices, which is also covered here. Another challenge in ZnO-based RRAM is that the realization of ultra-thin and low power devices. Nevertheless, ZnO not only offers decent memory properties but also has a unique potential to be used as multifunctional nonvolatile memory devices. The impact of electrode materials, metal doping, stack structures, transparency, and flexibility on resistive switching properties and switching parameters of ZnO-based resistive switching memory devices are briefly compared. This review also covers the different nanostructured-based emerging resistive switching memory devices for low power scalable devices. It may give a valuable insight on developing ZnO-based RRAM and also should encourage researchers to overcome the challenges.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA