Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(9): e0309514, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39231175

RESUMEN

Plantar shear stress may have an important role in the formation of a Diabetic Foot Ulcer, but its measurement is regarded as challenging and has limited research. This paper highlights the importance of anatomical specific shear sensor calibration and presents a feasibility study of a novel shear sensing system which has measured in-shoe shear stress from gait activity on both healthy and diabetic subjects. The sensing insole was based on a strain gauge array embedded in a silicone insole backed with a commercial normal pressure sensor. Sensor calibration factors were investigated using a custom mechanical test rig with indenter to exert both normal and shear forces. Indenter size and location were varied to investigate the importance of both loading area and position on measurement accuracy. The sensing insole, coupled with the calibration procedure, was tested one participant with diabetes and one healthy participant during two sessions of 15 minutes of treadmill walking. Calibration with different indenter areas (from 78.5 mm2 to 707 mm2) and different positions (up to 40 mm from sensor centre) showed variation in measurements of up to 80% and 90% respectively. Shear sensing results demonstrated high repeatability (>97%) and good accuracy (mean absolute error < ±18 kPa) in bench top mechanical tests and less than 21% variability within walking of 15-minutes duration. The results indicate the importance of mechanical coupling between embedded shear sensors and insole materials. It also highlights the importance of using an appropriate calibration method to ensure accurate shear stress measurement. The novel shear stress measurement system presented in this paper, demonstrates a viable method to measure accurate and repeatable in-shoe shear stress using the calibration procedure described. The validation and calibration methods outlined in this paper could be utilised as a standardised approach for the research community to develop and validate similar measurement technologies.


Asunto(s)
Pie Diabético , Zapatos , Estrés Mecánico , Humanos , Pie Diabético/fisiopatología , Pie Diabético/diagnóstico , Calibración , Masculino , Pie/fisiopatología , Pie/fisiología , Femenino , Fenómenos Biomecánicos , Persona de Mediana Edad , Marcha/fisiología , Caminata/fisiología , Presión , Adulto
2.
PLoS One ; 19(5): e0303826, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38758937

RESUMEN

BACKGROUND: The global number of people with diabetes is estimated to reach 643 million by 2030 of whom 19-34% will present with diabetic foot ulceration. Insoles which offload high-risk ulcerative regions on the foot, by removing insole material, are the main contemporary conservative treatment to maintain mobility and reduce the likelihood of ulceration. However, their effect on the rest of the foot and relationship with key gait propulsive and balance kinematics and kinetics has not been well researched. PURPOSE: The aim of this study is to investigate the effect of offloading insoles on gait kinematics, kinetics, and plantar pressure throughout the gait cycle. METHODS: 10 healthy subjects were recruited for this experiment to walk in 6 different insole conditions. Subjects walked at three speeds on a treadmill for 10 minutes while both plantar pressure and gait kinematics, kinetics were measured using an in-shoe pressure measurement insole and motion capture system/force plates. Average peak plantar pressure, pressure time integrals, gait kinematics and centre of force were analysed. RESULTS: The average peak plantar pressure and pressure time integrals changed by -30% (-68% to 3%) and -36% (-75% to -1%) at the region of interest when applying offloading insoles, whereas the heel strike and toe-off velocity changed by 15% (-6% to 32%) and 12% (-2% to 19%) whilst walking at three speeds. CONCLUSION: The study found that offloading insoles reduced plantar pressure in the region of interest with loading transferred to surrounding regions increasing the risk of higher pressure time integrals in these locations. Heel strike and toe-off velocities were increased under certain configurations of offloading insoles which may explain the higher plantar pressures and supporting the potential of integrating kinematic gait variables within a more optimal therapeutic approach. However, there was inter-individual variability in responses for all variables measured supporting individualised prescription.


Asunto(s)
Calcáneo , Ortesis del Pié , Marcha , Presión , Humanos , Marcha/fisiología , Fenómenos Biomecánicos , Proyectos Piloto , Masculino , Femenino , Adulto , Calcáneo/fisiología , Voluntarios Sanos , Zapatos , Cinética , Caminata/fisiología , Metatarso/fisiología , Pie/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA