Your browser doesn't support javascript.
loading
In-shoe plantar shear stress sensor design, calibration and evaluation for the diabetic foot.
Haron, Athia H; Li, Lutong; Shuang, Jiawei; Lin, Chaofan; Dawes, Helen; Mansoubi, Maedeh; Crosby, Damian; Massey, Garry; Reeves, Neil; Bowling, Frank; Cooper, Glen; Weightman, Andrew.
Afiliación
  • Haron AH; Department of Mechanical, Aerospace and Civil Engineering (MACE), University of Manchester, Manchester, United Kingdom.
  • Li L; Department of Mechanical, Aerospace and Civil Engineering (MACE), University of Manchester, Manchester, United Kingdom.
  • Shuang J; Department of Mechanical, Aerospace and Civil Engineering (MACE), University of Manchester, Manchester, United Kingdom.
  • Lin C; Department of Mechanical, Aerospace and Civil Engineering (MACE), University of Manchester, Manchester, United Kingdom.
  • Dawes H; Medical School, NIHR Exeter BRC, University of Exeter, Exeter, United Kingdom.
  • Mansoubi M; Medical School, NIHR Exeter BRC, University of Exeter, Exeter, United Kingdom.
  • Crosby D; Department of Mechanical, Aerospace and Civil Engineering (MACE), University of Manchester, Manchester, United Kingdom.
  • Massey G; Medical School, NIHR Exeter BRC, University of Exeter, Exeter, United Kingdom.
  • Reeves N; Musculoskeletal Biomechanics and Research in Science and Engineering faculty of Manchester Metropolitan University, Manchester, United Kingdom.
  • Bowling F; Manchester University NHS Foundation Trust within the Departments of Diabetes and Vascular Surgery, Manchester, United Kingdom.
  • Cooper G; Department of Mechanical, Aerospace and Civil Engineering (MACE), University of Manchester, Manchester, United Kingdom.
  • Weightman A; Department of Mechanical, Aerospace and Civil Engineering (MACE), University of Manchester, Manchester, United Kingdom.
PLoS One ; 19(9): e0309514, 2024.
Article en En | MEDLINE | ID: mdl-39231175
ABSTRACT
Plantar shear stress may have an important role in the formation of a Diabetic Foot Ulcer, but its measurement is regarded as challenging and has limited research. This paper highlights the importance of anatomical specific shear sensor calibration and presents a feasibility study of a novel shear sensing system which has measured in-shoe shear stress from gait activity on both healthy and diabetic subjects. The sensing insole was based on a strain gauge array embedded in a silicone insole backed with a commercial normal pressure sensor. Sensor calibration factors were investigated using a custom mechanical test rig with indenter to exert both normal and shear forces. Indenter size and location were varied to investigate the importance of both loading area and position on measurement accuracy. The sensing insole, coupled with the calibration procedure, was tested one participant with diabetes and one healthy participant during two sessions of 15 minutes of treadmill walking. Calibration with different indenter areas (from 78.5 mm2 to 707 mm2) and different positions (up to 40 mm from sensor centre) showed variation in measurements of up to 80% and 90% respectively. Shear sensing results demonstrated high repeatability (>97%) and good accuracy (mean absolute error < ±18 kPa) in bench top mechanical tests and less than 21% variability within walking of 15-minutes duration. The results indicate the importance of mechanical coupling between embedded shear sensors and insole materials. It also highlights the importance of using an appropriate calibration method to ensure accurate shear stress measurement. The novel shear stress measurement system presented in this paper, demonstrates a viable method to measure accurate and repeatable in-shoe shear stress using the calibration procedure described. The validation and calibration methods outlined in this paper could be utilised as a standardised approach for the research community to develop and validate similar measurement technologies.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Zapatos / Estrés Mecánico / Pie Diabético Límite: Adult / Female / Humans / Male / Middle aged Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2024 Tipo del documento: Article País de afiliación: Reino Unido Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Zapatos / Estrés Mecánico / Pie Diabético Límite: Adult / Female / Humans / Male / Middle aged Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2024 Tipo del documento: Article País de afiliación: Reino Unido Pais de publicación: Estados Unidos