Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 770
Filtrar
1.
J Ethnopharmacol ; 336: 118733, 2025 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-39181281

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Smilax glabra rhizome has a long history been used for clinical purposes in traditional Chinese medicinal for treating various inflammatory conditions. Engeletin1 (ENG) is one of the most abundant bioactive compounds found in Smilax glabra rhizome, with anti-inflammatory, antioxidant, and ulcer-preventing activities. AIM OF THE STUDY: The purpose of this study was to investigate the ability of ENG to alleviate inflammatory symptoms and improve epithelial barrier integrity utilize a 2,4,6-trinitrobenzene sulfonic acid2 (TNBS)-induced murine model in Crohn's disease3 (CD)-like colitis, and to characterize the underlying anti-inflammatory mechanisms of action. MATERIALS AND METHODS: A colitis model was established in BALB/c mice and treated with ENG for 7 days. RAW264.7 macrophages were pre-treated with ENG and lipopolysaccharide4 (LPS) stimulation. The mice's weight and colon length were assessed. qPCR and Western blotting were used to analyze gene expression and TLR4-NFκB pathway. Flow cytometry was used to analyze the polarization states of the macrophages. RESULTS: Treatment with ENG was sufficient to significantly alleviate symptoms of inflammation and colonic epithelial barrier integrity in treated mice. Significant inhibition of TNF-α, IL-1ß, and IL-6 expression was observed following ENG treatment in vivo and in vitro. ENG was also determined to be capable of inhibiting the expression of iNOS and CD86, inhibited M1 macrophage polarization in vitro, as well as the TLR4-NFκB signaling pathway. Molecular docking showed a highly stable binding between ENG and TLR4. CONCLUSION: ENG has been proven to alleviate inflammation and ameliorate the damage of epithelial barrier in CD-like colitis. ENG also suppressed the M1 macrophages polarization and the inhibited inflammatory cytokines. TLR4-NFκB signaling pathway, especially TLR4, may be the target of ENG. These data offer a new insight into the therapeutic mechanisms of ENG.


Asunto(s)
Antiinflamatorios , Colitis , Enfermedad de Crohn , FN-kappa B , Transducción de Señal , Receptor Toll-Like 4 , Ácido Trinitrobencenosulfónico , Animales , Masculino , Ratones , Antiinflamatorios/farmacología , Colitis/tratamiento farmacológico , Colitis/inducido químicamente , Colitis/metabolismo , Colon/efectos de los fármacos , Colon/patología , Colon/metabolismo , Enfermedad de Crohn/tratamiento farmacológico , Citocinas/metabolismo , Modelos Animales de Enfermedad , Flavonoles , Glicósidos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones Endogámicos BALB C , FN-kappa B/metabolismo , Células RAW 264.7 , Transducción de Señal/efectos de los fármacos , Smilax/química , Receptor Toll-Like 4/metabolismo
2.
Angew Chem Int Ed Engl ; : e202416350, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39247985

RESUMEN

Covalent organic frameworks (COFs) have garnered attention for their potential in photocatalytic hydrogen peroxide (H2O2) production. However, their photocatalytic efficiency is impeded by insufficient exciton dissociation and charge carrier transport. Constructing COFs with superior planarity is an effective way to enhance the π-conjugation degree and facilitate electron-hole separation. Nonetheless, the conventional linear linkers of COFs inevitably introduce torsional strain that disrupts coplanarity.Herein, we address this issue by introducing inherently coplanar triazine rings as linkers and fused building blocks as monomers to create covalent triazine frameworks (fused CTFs) with superior coplanarity. Both experimental and theoretical calculations confirm that CTFs constructed from fused building blocks significantly enhance the electron-hole separation efficiency and improve the photocatalytic performance, compared to the CTFs constructed with non-fused building blocks. The frontier molecular orbitals and electrostatic potentials (ESP) revealed that the ORR is preferentially facilitated by the triazine rings, with the WOR likely occurring at the thiophene-containing moiety. Remarkably, CTF-BTT achieved an exceptional H2O2 production rate of 74956 µmol g-1 h-1 when employing 10% benzyl alcohol (V/V) as a sacrificial agent in an O2-saturated atmosphere, surpassing existing photocatalysts by nearly an order of magnitude.

3.
Nat Aging ; 4(9): 1194-1210, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39251866

RESUMEN

Reproductive aging is a major cause of fertility decline, attributed to decreased oocyte quantity and developmental potential. A possible cause is aging of the surrounding follicular somatic cells that support oocyte growth and development by providing nutrients and regulatory factors. Here, by creating chimeric follicles, whereby an oocyte from one follicle was transplanted into and cultured within another follicle whose native oocyte was removed, we show that young oocytes cultured in aged follicles exhibited impeded meiotic maturation and developmental potential, whereas aged oocytes cultured within young follicles were significantly improved in rates of maturation, blastocyst formation and live birth after in vitro fertilization and embryo implantation. This rejuvenation of aged oocytes was associated with enhanced interaction with somatic cells, transcriptomic and metabolomic remodeling, improved mitochondrial function and higher fidelity of meiotic chromosome segregation. These findings provide the basis for a future follicular somatic cell-based therapy to treat female infertility.


Asunto(s)
Oocitos , Folículo Ovárico , Rejuvenecimiento , Femenino , Animales , Folículo Ovárico/crecimiento & desarrollo , Rejuvenecimiento/fisiología , Ratones , Fertilización In Vitro/métodos , Senescencia Celular , Meiosis , Microambiente Celular , Envejecimiento/fisiología
4.
Artículo en Inglés | MEDLINE | ID: mdl-39297205

RESUMEN

BACKGROUND: Arteriovenous fistulae (AVFs) are the preferred vascular access for hemodialysis in patients with end-stage kidney disease. Chronic kidney disease (CKD) is associated with endothelial injury, impaired AVF maturation, and reduced patency, as well as utilization. Because CKD is characterized by multiple pathophysiological processes that induce endothelial-to-mesenchymal transition (EndMT), we hypothesized that CKD promotes EndMT during venous remodeling and that disruption of endothelial TGF (transforming growth factor)-ß signaling inhibits EndMT to prevent AVF failure even in the end-stage kidney disease environment. METHODS: The mouse 5/6 nephrectomy and aortocaval fistula models were used. CKD was created via 5/6 nephrectomy, with controls of no (0/6) or partial (3/6) nephrectomy in C57BL/6J mice. AVFs were created in mice with knockdown of TGF-ßR1/R2 (TGF-ß receptors type 1/2) in either smooth muscle cells or endothelial cells. AVF diameters and patency were measured and confirmed by serial ultrasound examination. AVF, both murine and human, were examined using Western blot, histology, and immunofluorescence. Human and mouse endothelial cells were used for in vitro experiments. RESULTS: CKD accelerates TGF-ß activation and promotes EndMT that is associated with increased AVF wall thickness and reduced patency in mice. Inhibition of TGF-ß signaling in both endothelial cells and smooth muscle cells decreased smooth muscle cell proliferation in the AVF wall, attenuated EndMT, and was associated with reduced wall thickness, increased outward remodeling, and improved AVF patency. Human AVF also showed increased TGF-ß signaling and EndMT. CONCLUSIONS: CKD promotes EndMT and reduces AVF patency. Inhibition of TGF-ß signaling, especially disruption of endothelial cell-specific TGF-ß signaling, attenuates EndMT and improves AVF patency in mouse AVF. Inhibition of EndMT may be a therapeutic approach of translational significance to improve AVF patency in human patients with CKD.

5.
Cardiovasc Diagn Ther ; 14(4): 576-588, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39263476

RESUMEN

Background: Heart failure (HF) remains one of the most common events in the progression of hypertension. Magnoflorine (MNF) has been shown beneficial effects on the cardiovascular system. However, the action of MNF on angiotensin (Ang) II-induced cardiac remodeling and its underlying mechanisms have not yet been characterised. Here, we assessed the action of MNF in the development of hypertension-related HF. Methods: C57BL/6 male mice were subjected to Ang II through a micro-osmotic pump infusion continuously for 4 weeks to induce hypertensive HF. MNF (10 and 20 mg/kg) was administered in the final 2 weeks. Ang II content was measured by enzyme-linked immunosorbent assay (ELISA) kit. Values of ejection fraction (EF) and fractional shortening (FS) were detected using an ultrasound diagnostic instrument. The mRNA levels of hypertrophic and fibrotic genes were determined by real-time quantitative polymerase chain reaction (RT-qPCR). Haematoxylin and eosin (H&E), wheat germ agglutinin (WGA), Masson trichrome, and Sirius Red staining were used to analyse pathologic changes in heart tissues. The expression levels of phosphorylated AMP-activated protein kinase (AMPK), light chain 3 microtubule associated protein II (LC3 II) to LC3 I, and p62 were detected by western blot assay. Results: MNF significantly improved cardiac dysfunction and the content of creatine kinase-MB without altering blood pressure in Ang II-challenged mice. MNF obviously corrected the phenotypes of cardiac hypertrophy and fibrosis, including the high mRNA levels of atrial natriuretic peptide (Anp), brain natriuretic peptide (Bnp), collagen1a (Col1a1), transforming growth factor beta (Tgfb1), enlarged myocardial areas, and increased positive areas of Masson trichrome and Sirius Red staining. In addition, MNF alleviated oxidative injury, reflected by the upregulation of glutathione and the downregulation of reactive oxygen species and malondialdehyde. The activation of AMPK was elevated accompanied by an increased level of autophagy by MNF in hypertensive heart tissues. The therapeutic action of MNF was confirmed in Ang II-challenged H9c2 cells. Specifically, the AMPK inhibitor could eliminate the autophagy pathway in which MNF is involved. Conclusions: MNF has benefits in hypertension-induced cardiac remodeling, which was partially associated with the improvement of oxidative stress via the mediation of the AMPK/autophagy axis.

6.
J Intensive Care Med ; : 8850666241267860, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39193773

RESUMEN

BACKGROUND: The study was to investigate the effects of dexmedetomidine on microcirculation in patients with early septic shock despite initial resuscitation. METHODS: This was a single-center prospective study. Patients with early septic shock despite initial fluid resuscitation who still required norepinephrine to maintain target arterial pressure were enrolled. Hemodynamic and gas analysis variables, sublingual microcirculatory parameters were measured at baseline, and during the infusion of dexmedetomidine for 1 h (0.7mcg/kg/h). To elucidate the possible mechanisms of the effect of dexmedetomidine on microcirculation, after interim analysis, the dose-effect relationship of dexmedetomidine on microcirculation and catecholamine level were investigated at baseline, 1h after stabilization at different doses of dexmedetomidine (0.7 and 0.3 mcg/kg/h), and 2h after dexmedetomidine cessation. RESULTS: Forty-four patients with septic shock were enrolled after initial resuscitation. Compared with baseline, total and perfused vascular densities were statistically increased after infusion of dexmedetomidine, which was correlated with the dose of dexmedetomidine. During dexmedetomidine infusion, plasma norepinephrine, and dopamine level were significantly decreased. Changes in plasma norepinephrine level contributed to dexmedetomidine infusion were well correlated with changes in total and perfused vascular densities. CONCLUSIONS: In adult patients with resuscitated septic shock, dexmedetomidine improved microcirculation, which might be associated with plasma catecholamine level. However, double-blinded large sample studies should be performed to verify the results.Trial registration: Clinicaltrials.gov NCT02270281. Registered October 16, 2014.

7.
Free Radic Biol Med ; 224: 130-143, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39182738

RESUMEN

Oxidative signaling plays a dual role in tumor initiation and progression to malignancy; however, the regulatory mechanisms of oxidative stress in gastric cancer remain to be explored. In this study, we discovered that Prohibitin 2 (PHB2) specifically regulates cytosolic reactive oxygen species production in gastric cancer and facilitates its malignant progression. Previously, we found that PHB2 is upregulated in gastric cancer, correlating with increased tumorigenicity of gastric cancer cells and poor patient prognosis. Here, we discovered that PHB2 expression correlates with the activation of the ERK/MAPK cascade, positively regulating the top gene NADPH oxidase 1 (NOX1) within this pathway. Further mechanistic investigation reveals that PHB2 enhances NOX1 transcription by interacting with the transcription factor C/EBP-beta and promoting its translocation into the nucleus, resulting in elevated intracellular oxidative signaling driven by NOX1, which subsequently activates ERK. Therefore, we propose that targeting PHB2-C/EBP-beta-NOX1-mediated cytosolic oxidative stress could offer a promising therapeutic avenue for combating gastric cancer malignant progression.

8.
Mutat Res ; 829: 111875, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39098234

RESUMEN

BACKGROUND: Prostate cancer (PCa), a prevalent malignancy worldwide, is frequently identified in advanced stages due to the absence of distinctive early symptoms, thereby culminating in the development of chemotherapy-induced drug resistance. Exploring novel resistance mechanisms and identifying new therapeutic agents can facilitate the advancement of more efficacious strategies for PCa treatment. METHODS: Bioinformatics analysis was employed to investigate the expression of FOXG1 in PCa tissues. Subsequently, qRT-PCR was utilized to validate FOXG1 mRNA expression levels in corresponding PCa cell lines. FOXG1 knockdown was performed, and cell proliferation was assessed using CCK-8 assays, while cell migration and invasion capabilities were evaluated through wound healing and Transwell assays. Western blot and Seahorse analyzer were used to measure oxidative phosphorylation (OXPHOS) levels. Additionally, to explore potential approaches to alleviate PCa drug resistance, this study assessed the impact of biologically active saikosaponin-d (SSd) on PCa malignant progression and resistance by regulating FOXG1 expression. RESULTS: FOXG1 exhibited high expression in PCa tissues and cell lines. Knockdown of FOXG1 inhibited the proliferation, migration, and invasion of PCa cells, while FOXG1 overexpression had the opposite effect and promoted OXPHOS levels. The addition of an OXPHOS inhibitor prevented this outcome. Finally, SSd was shown to suppress FOXG1 expression and reverse docetaxel resistance in PCa cells through the OXPHOS pathway. CONCLUSION: This work demonstrated that SSd mediated FOXG1 to reverse malignant progression and docetaxel resistance in PCa through OXPHOS.

9.
Clin Cosmet Investig Dermatol ; 17: 1783-1787, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39132030

RESUMEN

Porokeratosis comprises a diverse range of both hereditary and acquired disorders characterized by clonal hyperproliferation of keratinocytes. These disorders manifest with a variety of clinical presentations but are histologically unified by the presence of the cornoid lamella. In this study, we report an unusual presentation of a rare clinical variant of porokeratosis, namely disseminated superficial porokeratosis, in which mutations in the Mevalonate decarboxylase (MVD) gene have been identified. This finding contributes to the growing understanding of the genetic underpinnings of this complex dermatological condition and may have implications for diagnosis and treatment.

10.
Environ Int ; 191: 108966, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39167854

RESUMEN

Triclosan (TCS) is an environmental pollutant. In recent years, there has been increasing level of concern regarding the potential toxicity of TCS in animals and humans, especially its effects on the nervous system. However, whether TCS induces ADHD-like behaviour and the mechanism by which it affects neural function are unclear. The impact of 60 days of continuous exposure to TCS on the behaviour of offspring rats was assessed in this research. According to the results of this study, TCS exposure led to ADHD-like behaviour in offspring rats and activated microglia in the prefrontal cortex (PFC), inducing inflammatory factor release. In vitro studies showed that TCS increased the levels of inflammatory cytokines, including interleukin (IL)-1ß, IL-6 and tumour necrosis factor (TNF)-α, in HMC3 cells. More importantly, we found that TCS regulated the STAT3 pathway by upregulating PKM2 via hnRNPA1. In summary, this study suggested that TCS can induce ADHD-like behaviour in offspring rats and continuously activate HMC3 microglia through the hnRNPA1-PKM2-STAT3 feedback loop, promoting inflammatory cytokine secretion.

11.
Ecotoxicol Environ Saf ; 282: 116766, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39047361

RESUMEN

In recent years, exposure to triclosan (TCS) has been linked to an increase in psychiatric disorders. Nonetheless, the precise mechanisms of this occurrence remain elusive. Therefore, this study developed a long-life TCS-exposed rat model, an SH-SY5Y cell model, and an atomoxetine hydrochloride (ATX) treatment model to explore and validate the neurobehavioral mechanisms of TCS from multiple perspectives. In the long-life TCS-exposed model, pregnant rats received either 0 mg/kg (control) or 50 mg/kg TCS by oral gavage throughout pregnancy, lactation, and weaning of their offspring (up to 8 weeks old). In the ATX treatment model, weanling rats received daily injections of either 0 mg/kg (control) or 3 mg/kg ATX via intraperitoneal injection until they reached 8 weeks old. Unlike the TCS model, ATX exposure only occurred after the pups were weaned. The results indicated that long-life TCS exposure led to attention-deficit hyperactivity disorder (ADHD)-like behaviors in male offspring rats accompanied by dopamine-related mRNA and protein expression imbalances in the prefrontal cortex (PFC). Moreover, in vitro experiments also confirmed these findings. Mechanistically, TCS reduced dopamine (DA) synthesis, release, and transmission, and increased reuptake in PFC, thereby reducing synaptic gap DA levels and causing dopaminergic deficits. Additional experiments revealed that increased DA concentration in PFC by ATX effectively alleviated TCS-induced ADHD-like behavior in male offspring rats. These findings suggest that long-life TCS exposure causes ADHD-like behavior in male offspring rats through dopaminergic deficits. Furthermore, ATX treatment not only reduce symptoms in the rats, but also reveals valuable insights into the neurotoxic mechanisms induced by TCS.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Dopamina , Corteza Prefrontal , Efectos Tardíos de la Exposición Prenatal , Triclosán , Animales , Triclosán/toxicidad , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Trastorno por Déficit de Atención con Hiperactividad/inducido químicamente , Femenino , Ratas , Embarazo , Masculino , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Dopamina/metabolismo , Ratas Sprague-Dawley , Conducta Animal/efectos de los fármacos , Clorhidrato de Atomoxetina , Humanos
12.
Talanta ; 279: 126596, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39053362

RESUMEN

Recently, peptide-drug conjugate (PDC) has become the most promising conjugated drug for tumor therapy after antibody-drug conjugate due to stronger tumor penetration capacity and lower immunogenicity. CBP-1018 was a PDC with dual-ligand conjugated to MMAE via a cleavable linker (MC-Val-Cit-PABC) that can be lysed by cathepsins B. In this study, two specific LC-MS/MS methods were developed and validated for the determination of CBP-1018 and its metabolite MMAE in human plasma. To prevent the cleavable MC-Val-Cit-PABC linker from degradation, a protease inhibitor (cOmplete solution) was added to the pre-cooled vacuum tubes and the separated plasma samples. The assays involved the pretreatment of CBP-1018 by protein precipitation with H2O-ACN (1:9, v/v) and the extraction of MMAE by liquid-liquid extraction with ethyl acetate under alkaline condition to eliminate the interference of CBP-1018 on MMAE. The two analytes showed good linearities over the calibration ranges (R2 ≥ 9980). Both accuracy and precision met the acceptance criteria. The validated methods were successfully applied to the phase I dose-escalation study of CBP-1018 injection in Chinese patients with solid tumors to evaluate the pharmacokinetic properties of CBP-1018 and MMAE. The results showed that CBP-1018 was eliminated immediately after injection and MMAE reached the maximum exposure at approximately 2 h after infusion. The maximum concentration of MMAE did not exceed 20.0 ng/mL, suggesting that the off-target toxicity of CBP-1018 injection was controllable.


Asunto(s)
Espectrometría de Masas en Tándem , Humanos , Espectrometría de Masas en Tándem/métodos , Cromatografía Liquida/métodos , Péptidos/química , Ligandos , Cromatografía Líquida con Espectrometría de Masas
13.
Structure ; 32(8): 1055-1067.e6, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39013463

RESUMEN

The recently emerged BA.2.86, JN.1, EG.5, EG.5.1, and HV.1 variants have a growth advantage. In this study, we explore the structural bases of receptor binding and immune evasion for the Omicron BA.2.86, JN.1, EG.5, EG.5.1, and HV.1 sub-variants. Our findings reveal that BA.2.86 exhibits strong receptor binding, whereas its JN.1 sub-lineage displays a decreased binding affinity to human ACE2 (hACE2). Through complex structure analyses, we observed that the reversion of R493Q in BA.2.86 receptor binding domain (RBD) plays a facilitating role in receptor binding, while the L455S substitution in JN.1 RBD restores optimal affinity. Furthermore, the structure of monoclonal antibody (mAb) S309 complexed with BA.2.86 RBD highlights the importance of the K356T mutation, which brings a new N-glycosylation motif, altering the binding pattern of mAbs belonging to RBD-5 represented by S309. These findings emphasize the importance of closely monitoring BA.2.86 and its sub-lineages to prevent another wave of SARS-CoV-2 infections.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Anticuerpos Monoclonales , COVID-19 , Evasión Inmune , Unión Proteica , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Humanos , SARS-CoV-2/inmunología , SARS-CoV-2/metabolismo , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/química , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/genética , COVID-19/inmunología , COVID-19/virología , COVID-19/metabolismo , Sitios de Unión , Modelos Moleculares , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/metabolismo , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/metabolismo , Mutación
14.
Genet Med ; 26(10): 101202, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38958063

RESUMEN

PURPOSE: The aim of this study is to identify likely pathogenic (LP) and pathogenic (P) genetic results for autism that can be returned to participants in SPARK (SPARKforAutism.org): a large recontactable cohort of people with autism in the United States. We also describe the process to return these clinically confirmed genetic findings. METHODS: We present results from microarray genotyping and exome sequencing of 21,532 individuals with autism and 17,785 of their parents. We returned LP and P (American College of Medical Genetics criteria) copy-number variants, chromosomal aneuploidies, and variants in genes with strong evidence of association with autism and intellectual disability. RESULTS: We identified 1903 returnable LP/P variants in 1861 individuals with autism (8.6%). 89.5% of these variants were not known to participants. The diagnostic genetic result was returned to 589 participants (53% of those contacted). Features associated with a higher probability of having a returnable result include cognitive and medically complex features, being female, being White (versus non-White) and being diagnosed more than 20 years ago. We also find results among autistics across the spectrum, as well as in transmitting parents with neuropsychiatric features but no autism diagnosis. CONCLUSION: SPARK offers an opportunity to assess returnable results among autistic people who have not been ascertained clinically. SPARK also provides practical experience returning genetic results for a behavioral condition at a large scale.

15.
Discov Med ; 36(186): 1453-1463, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39054716

RESUMEN

BACKGROUND: Levosimendan (Levo) is a drug commonly used to treat heart failure. Recent studies have suggested that Levo may have neuroprotective effects, but it is still unknown how exactly it contributes to hypoxia-induced brain damage. Thus, the aim of this study was to investigate how Levo affects hypoxia-induced brain damage and to clarify any possible underlying mechanisms. METHODS: One group of rats (Levo group) was pretreated with Levo via oral force-feeding for four weeks. Another group (Ferrostatin-1 (Fer-1) group) was pretreated with intraperitoneal injections of Fer-1 for four weeks. A rat model of chronic hypoxia was created by treating rats with 13% O2 for 14 days in a closed hypoxia chamber. For each group (Control, Model, Levo, Fer-1), we evaluated learning and memory capacity and the morphology and structure of neurons in the rats' brain tissue. Other measurements included tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1ß), and interleukin-6 (IL-6); malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px); Fe2+; apoptosis; cleaved caspase-3, caspase-3; phosphatase and tensin homolog (PTEN), protein kinase B (Akt), phosphorylated Akt (p-Akt); and ferroptosis-related proteins Nuclear factor erythroid 2-related factor 2 (Nrf2), glutathione peroxidase 4 (GPX4), and solute carrier family 7 member 11 (SLC7A11). RESULTS: The Model group rats had considerably fewer neurons than the Control group, with loosely arranged cells, and markedly impaired learning and memory abilities (p < 0.05). Oxidative damage and inflammation in brain tissues of the Model group were significantly intensified, accompanied by a substantial increase in neuronal apoptosis (p < 0.05). PTEN protein, Fe2+ concentration, and cleaved caspase-3 expression were all significantly upregulated, whereas p-Akt, Nrf2, GPX4, and SLC7A11 proteins were dramatically downregulated (p < 0.05). Both the Levo and Fer-1 groups demonstrated significantly more neurons and closely arranged cells than the Model group, along with a notable improvement in learning and memory abilities (p < 0.05). Oxidative damage and inflammation in brain tissues of the Levo and Fer-1 groups were markedly alleviated, and neuronal apoptosis was suppressed (p < 0.05). p-Akt, Nrf2, GPX4, and SLC7A11 proteins were dramatically upregulated, whereas the expression of cleaved caspase-3, PTEN protein, and Fe2+ content was considerably downregulated (p < 0.05). CONCLUSIONS: Levo effectively mitigates brain injury in rats with chronic hypoxia, likely by regulating ferroptosis via the PTEN/Akt signaling pathway.


Asunto(s)
Ferroptosis , Fosfohidrolasa PTEN , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Simendán , Animales , Fosfohidrolasa PTEN/metabolismo , Ratas , Ferroptosis/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Masculino , Simendán/farmacología , Simendán/uso terapéutico , Ratas Sprague-Dawley , Lesiones Encefálicas/tratamiento farmacológico , Lesiones Encefálicas/metabolismo , Lesiones Encefálicas/etiología , Lesiones Encefálicas/patología , Modelos Animales de Enfermedad , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Estrés Oxidativo/efectos de los fármacos , Ciclohexilaminas , Fenilendiaminas
16.
World J Gastrointest Surg ; 16(6): 1601-1608, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38983328

RESUMEN

BACKGROUND: This study was designed to investigate the clinical efficacy and safety of Gamma Knife® combined with transarterial chemoembolization (TACE) and immunotherapy in the treatment of primary liver cancer. AIM: To investigate the clinical efficacy and safety of Gamma Knife® combined with TACE and immune-targeted therapy in the treatment of primary liver cancer. METHODS: Clinical data from 51 patients with primary liver cancer admitted to our hospital between May 2018 and October 2022 were retrospectively collected. All patients underwent Gamma Knife® treatment combined with TACE and immunotherapy. The clinical efficacy, changes in liver function, overall survival (OS), and progression-free survival (PFS) of patients with different treatment responses were evaluated, and adverse reactions were recorded. RESULTS: The last follow-up for this study was conducted on October 31, 2023. Clinical evaluation of the 51 patients with primary liver cancer revealed a partial response (PR) in 27 patients, accounting for 52.94% (27/51); stable disease (SD) in 16 patients, accounting for 31.37% (16/51); and progressive disease (PD) in 8 patients, accounting for 15.69% (8/51). The objective response rate was 52.94%, and the disease control rate was 84.31%. Alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase, and alpha-fetoprotein isoform levels decreased after treatment compared with pretreatment (all P = 0.000). The median OS was 26 months [95% confidence interval (95%CI): 19.946-32.054] in the PR group and 19 months (95%CI: 14.156-23.125) in the SD + PD group, with a statistically significant difference (P = 0.015). The median PFS was 20 months (95%CI: 18.441-34.559) in the PR group and 12 months (95%CI: 8.745-13.425) in the SD + PD group, with a statistically significant difference (P = 0.002). Common adverse reactions during treatment included nausea and vomiting (39.22%), thrombocytopenia (27.45%), and leukopenia (25.49%), with no treatment-related deaths reported. CONCLUSION: Gamma Knife® combined with TACE and immune-targeted therapy is safe and effective in the treatment of primary liver cancer and has a good effect on improving the clinical benefit rate and liver function of patients.

17.
World J Clin Cases ; 12(19): 3866-3872, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38994274

RESUMEN

BACKGROUND: The incidence of Barrett's esophagus (BE) in China is lower compared to the Western populations. Hence, studies conducted in the Chinese population has been limited. The current treatment options available for BE treatment includes argon plasma coagulation (APC), radiofrequency ablation and cryoablation, all with varying degrees of success. AIM: To determine the efficacy and safety of HybridAPC in the treatment of BE. METHODS: The study cohort consisted of patients with BE who underwent HybridAPC ablation treatment. These procedures were performed by seven endoscopists from different tertiary hospitals. The duration of the procedure, curative rate, complications and recurrent rate by 1-year follow-up were recorded. RESULTS: Eighty individuals were enrolled for treatment from July 2017 to June 2020, comprising of 39 males and 41 females with a median age of 54 years (range, 30 to 83 years). The technical success rate of HybridAPC was 100% and the overall curative rate was 98.15%. No severe complications occurred during the operation. BE cases were classified as short-segment BE and long-segment BE. Patients with short-segment BE were all considered cured without complications. Thirty-six patients completed the one-year follow-up without recurrence. Twenty-four percent had mild dysplasia which were all resolved with one post-procedural treatment. The mean duration of the procedure was 10.94 ± 6.52 min. CONCLUSION: Treatment of BE with HybridAPC was found to be a simple and quick procedure that is safe and effective during the short-term follow-up, especially in cases of short-segment BE. This technique could be considered as a feasible alternative ablation therapy for BE.

18.
Cells ; 13(13)2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38995006

RESUMEN

Immunotherapies have shown significant promise as an impactful strategy in cancer treatment. However, in glioblastoma multiforme (GBM), the most prevalent primary brain tumor in adults, these therapies have demonstrated lower efficacy than initially anticipated. Consequently, there is an urgent need for strategies to enhance the effectiveness of immune treatments. AURKA has been identified as a potential drug target for GBM treatment. An analysis of the GBM cell transcriptome following AURKA inhibition revealed a potential influence on the immune system. Our research revealed that AURKA influenced PD-L1 levels in various GBM model systems in vitro and in vivo. Disrupting AURKA function genetically led to reduced PD-L1 levels and increased MHC-I expression in both established and patient-derived xenograft GBM cultures. This process involved both transcriptional and non-transcriptional pathways, partly implicating GSK3ß. Interfering with AURKA also enhanced NK-cell-mediated elimination of GBM by reducing PD-L1 expression, as evidenced in rescue experiments. Furthermore, using a mouse model that mimics GBM with patient-derived cells demonstrated that Alisertib decreased PD-L1 expression in living organisms. Combination therapy involving anti-PD-1 treatment and Alisertib significantly prolonged overall survival compared to vehicle treatment. These findings suggest that targeting AURKA could have therapeutic implications for modulating the immune environment within GBM cells.


Asunto(s)
Aurora Quinasa A , Antígeno B7-H1 , Glioblastoma , Células Asesinas Naturales , Aurora Quinasa A/metabolismo , Aurora Quinasa A/antagonistas & inhibidores , Humanos , Glioblastoma/patología , Glioblastoma/tratamiento farmacológico , Glioblastoma/inmunología , Glioblastoma/genética , Antígeno B7-H1/metabolismo , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/metabolismo , Animales , Ratones , Línea Celular Tumoral , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Azepinas/farmacología , Pirimidinas/farmacología , Citotoxicidad Inmunológica/efectos de los fármacos , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Small ; : e2403743, 2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38973074

RESUMEN

Photocatalytic hydrogen peroxide production from water and oxygen offers a clean and sustainable alternative to the conventional energy-intensive anthraquinone oxidation method. Compared to powdered covalent triazine frameworks (CTFs), the film morphology of CTFs provides better connectivity in 2D, yielding several advantages: more efficient connections between active sites, reduced electron-hole pair recombination, increased resistance to superoxide radical induced corrosion, and decreased light scattering. Leveraging these benefits, it has incorporated dual active sites for both the oxygen reduction reaction (ORR) and the water oxidation reaction (WOR) into a CTF film system. This dual-active CTF film demonstrated an exceptional hydrogen peroxide production rate of 19 460 µmol h⁻¹ m⁻2 after 1 h and 17 830 µmol h⁻¹ m⁻2 after 5 h under visible light irradiation (≥420 nm) without the need for sacrificial agents.

20.
Angew Chem Int Ed Engl ; : e202413131, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39078812

RESUMEN

The development of artificial photocatalysts to convert CO2 into renewable fuels and H2O into O2 is a complex and crucial task in the field of photosynthesis research. The current challenge is to enhance photogenerated charge separation, as well as to increase the oxidation capability of materials. Herein, a molecular junction-type porphyrin-based crystalline photocatalyst (Ni-TCPP-TPyP) was successfully self-assembled by incorporating a nickel porphyrin complex as a reduction site and pyridyl porphyrin as an oxidation site via hydrogen bonding and π-π stacking interactions. The resulting material has a highly crystalline structure, and the formation of inherent molecular junctions can accelerate photogenerated charge separation and transport. Thus, Ni-TCPP-TPyP achieved an excellent CO production rate of 309.3 µmol g-1 h-1 (selectivity, ~100%) without the use of any sacrificial agents, which is more than ten times greater than that of single-component photocatalyst (Ni-TCPP) and greater than that of the most organic photocatalysts. The structure-function relationship was investigated by femtosecond transient absorption spectroscopy and density functional theory calculations. Our work provides new insight for designing efficient artificial photocatalysts, paving the way for the development of clean and renewable fuels through the conversion of CO2 using solar energy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA