Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 946
Filtrar
1.
Biomaterials ; 313: 122766, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39180916

RESUMEN

The immune resistance of tumor microenvironment (TME) causes immune checkpoint blockade therapy inefficient to hepatocellular carcinoma (HCC). Emerging strategies of using chemotherapy regimens to reverse the immune resistance provide the promise for promoting the efficiency of immune checkpoint inhibitors. The induction of cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of interferon genes (STING) in tumor cells evokes the adaptive immunity and remodels the immunosuppressive TME. In this study, we report that mitoxantrone (MIT, a chemotherapeutic drug) activates the cGAS-STING signaling pathway of HCC cells. We provide an approach to augment the efficacy of MIT using a signal transducer and activator of transcription 3 (STAT3) inhibitor called napabucasin (NAP). We prepare an aminoethyl anisamide (AEAA)-targeted polyethylene glycol (PEG)-modified poly (lactic-co-glycolic acid) (PLGA)-based nanocarrier for co-delivery of MIT and NAP. The resultant co-nanoformulation can elicit the cGAS-STING-based immune responses to reshape the immunoresistant TME in the mice orthotopically grafted with HCC. Consequently, the resultant co-nanoformulation can promote anti-PD-1 antibody for suppressing HCC development, generating long-term survival, and inhibiting tumor recurrence. This study reveals the potential of MIT to activate the cGAS-STING signaling pathway, and confirms the feasibility of nano co-delivery for MIT and NAP on achieving HCC chemo-immunotherapy.


Asunto(s)
Carcinoma Hepatocelular , Inmunoterapia , Neoplasias Hepáticas , Proteínas de la Membrana , Mitoxantrona , Nucleotidiltransferasas , Factor de Transcripción STAT3 , Mitoxantrona/farmacología , Mitoxantrona/uso terapéutico , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Animales , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Humanos , Nucleotidiltransferasas/metabolismo , Proteínas de la Membrana/metabolismo , Factor de Transcripción STAT3/metabolismo , Ratones , Inmunoterapia/métodos , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Transducción de Señal/efectos de los fármacos , Microambiente Tumoral/efectos de los fármacos , Benzofuranos , Naftoquinonas
2.
Br J Pharmacol ; 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39228119

RESUMEN

BACKGROUND AND PURPOSE: Atherosclerosis is the basis of cardiovascular disease. Ferroptosis is a form of programmed cell death characterized by lipid peroxidation, which contributes to atherogenesis. The plant extract PNS (Panax notoginseng saponins), containing the main active ingredients of Panax notoginseng, exhibits anti-atherogenic properties. Herein, we determined whether PNS and its major components could attenuate atherosclerosis by suppressing ferroptosis and revealed the underlying mechanism(s). EXPERIMENTAL APPROACH: The anti-atherogenic effects of PNS and their association with inhibition of ferroptosis was determined in apoE-/- mice. In vitro, the anti-ferroptotic effect and mechanism(s) of PNS components were demonstrated in the presence of ferroptosis inducers. Expression of ferroptosis markers and the ubiquitination of Keap1 were evaluated in USP2-/- macrophages. Finally, the anti-atherogenic effect of USP2 knockout was determined by using USP2-/- mice treated with high-fat diet (HFD) and AAV-PCSK9. KEY RESULTS: PNS inhibited ferroptosis and atherosclerosis in vivo. PNS suppressed ferroptosis and ferroptosis-aggravated foam cell formation and inflammation in vitro. Mechanistically, PNS and its components activated Nrf2 by antagonizing Keap1, which was attributed to the inhibition of USP2 expression. USP2 knockout antagonized ferroptosis and ferroptosis-aggravated foam cell formation and inflammation, thus mitigating atherosclerosis. USP2 knockout abolished inhibitory effects of PNS on foam cell formation and inflammation in vitro. CONCLUSION AND IMPLICATIONS: PNS reduced USP2-mediated Keap1 de-ubiquitination and promoted Keap1 degradation, thereby activating Nrf2, improving iron metabolism and reducing lipid peroxidation, thus contributing to an anti-atherosclerotic outcome. Our study revealed the mechanism(s) underlying inhibition of ferroptosis and atherosclerosis by PNS.

3.
ACS Sens ; 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39223701

RESUMEN

The real-time and room-temperature detection of nitrogen dioxide (NO2) holds significant importance for environmental monitoring. However, the performance of NO2 sensors has been hampered by the trade-off between the high sensitivity and stability of conventional sensitive materials. Here, we present a novel fully flexible paper-based gas sensing structure by combining a homogeneous screen-printed titanium carbide (Ti3C2Tx) MXene-based nonmetallic electrode with a MoS2 quantum dots/Ti3C2Tx (MoS2 QDs/Ti3C2Tx) gas-sensing film. These precisely designed gas sensors demonstrate an improved response value (16.3% at 5 ppm) and a low theoretical detection limit of 12.1 ppb toward NO2, which exhibit a remarkable 3.5-fold increase in sensitivity compared to conventional Au interdigital electrodes. The outstanding performance can be attributed to the integration of the quantum confinement effect of MoS2 QDs and the conductivity of Ti3C2Tx, establishing the main active adsorption sites and enhanced charge transport pathways. Furthermore, an end-sealing effect strategy was applied to decorate the defect sites with naturally oxygen-rich tannic acid and conductive polymer, and the formed hydrogen bonding network at the interface effectively mitigated the oxidative degradation of the Ti3C2Tx-based gas sensors. The exceptional stability has been achieved with only a 1.8% decrease in response over 4 weeks. This work highlights the innovative design of high-performance gas sensing materials and homogeneous gas sensor techniques.

4.
J Inflamm Res ; 17: 5711-5721, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39219814

RESUMEN

The intestinal barrier system protects the human body from harmful factors, by continuously renewing the intestinal epithelium, tight junctions and enteric microbes. However, dietary fat can harm the intestinal epithelial barrier enhancing gut permeability. In recent years, Apolipoprotein A-I has attracted much attention because of its anti-inflammatory properties. Numerous studies have demonstrated that Apolipoprotein A-I can regulate mucosal immune cells, inhibit the progression of inflammation, promote epithelial proliferation and repair, and maintain physical barrier function; it can also regulate angiogenesis, thereby improving local circulation. This article is intended to elucidate the mechanism by which Apolipoprotein A-I improves intestinal barrier damage caused by dietary fat and to review the role of Apolipoprotein A-I in maintaining intestinal homeostasis.

5.
Cardiology ; : 1-16, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39284297

RESUMEN

INTRODUCTION: We sought to comprehensively explore the potential linear and nonlinear relationship between preoperative iron metabolism and perioperative myocardial injury (PMI) following cardiac surgery with cardiopulmonary bypass (CPB). METHODS: Patients who underwent cardiac surgery with CPB between December 2018 and April 2021 were retrospectively collected. The measurements of iron metabolism included serum iron (SI), serum ferritin (SF), transferrin (TRF), transferrin saturation (TS), and total iron binding capacity (TIBC). Logistic regression and restricted cubic spline (RCS) models were used for linear and nonlinear analysis. The primary outcome was PMI with a 100x upper reference limit (URL). RESULTS: Of 2420 patients screened,744 eligible patients were enrolled for the final analysis. The incidence of PMI was 25.7%. No significant linear relationship was observed. In the RCS models adjusted with age (median:56), female, and history of diabetes, a statistically significant difference was detected between TRF (p for nonlinear 0.0152) or TIBC (p for nonlinear 0.0477) and PMI. The gentle U-shaped relationship observed between TRF, TIBC, and PMI suggests that when TRF and TIBC increase, the risk decreases, reaching its lowest point when TRF=2.4 and TIBC=54. Nevertheless, as TRF and TIBC continue to increase, the risk starts to rise again. Subgroup analyses yielded consistent findings, with a notable emphasis on older patients who were more susceptible to variations in iron metabolism. CONCLUSION: Iron metabolism, including TRF, and TIBC, exhibited a nonlinear relationship with PMI by the RCS model adjusted by age, gender, and history of diabetes.

6.
Front Nutr ; 11: 1378853, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39279900

RESUMEN

Background: Previous studies revealed that vitamin K might help maintain muscle homeostasis, but this association has received little attention. We aimed to explore the associations of vitamin K intake with skeletal muscle mass and strength. Methods: We included cross-sectional data from the U.S. National Health and Nutrition Examination Survey (NHANES, 2011-2018). Vitamin K intake was assessed via 24-h recall. Covariate-adjusted multiple linear regression and restricted cubic splines were used to evaluate the associations of dietary vitamin K intake with skeletal muscle mass and strength, measured by dual-energy X-ray absorptiometry and handgrip dynamometer, respectively. Results: Dietary vitamin K intake was positively associated with skeletal muscle mass in males (ß = 0.05747, p = 0.0204) but not in females. We also revealed a positive association between dietary vitamin K intake and handgrip strength within the range of 0-59.871 µg/d (P nonlinear = 0.049). However, beyond this threshold, increasing vitamin K intake did not cause additional handgrip strength improvements. Conclusion: We provided evidence for a positive relationship between dietary vitamin K intake and skeletal muscle mass in males. Moreover, our study revealed a nonlinear relationship between dietary vitamin K intake and handgrip strength, highlighting an optimal intake range.

7.
BMJ Open ; 14(9): e088079, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39231550

RESUMEN

OBJECTIVES: We aimed to explore the lived experiences and needs of women after a recent stillbirth event. DESIGN: Qualitative phenomenological study. SETTING: The current study was conducted in a tertiary obstetric hospital in East China between 25 January 2024 and 29 March 2024. PARTICIPANTS: 14 women having experienced a stillbirth within the last 6 months. RESULTS: Researchers agreed on four key themes including individual variations in emotional reaction and recovery, physical recovery and concerns about future pregnancies, the critical role of social support systems and variations in perceptions of stillbirth as the death of a fetus versus a human being, along with related mourning rituals. These themes collectively highlight the multifaceted nature of the stillbirth experience, underscoring the complex interplay between personal, cultural and medical factors that shape women's emotional and physical responses. CONCLUSIONS: Post-stillbirth experiences among Chinese women are deeply individualised and influenced by a complex interplay of personal emotions, cultural contexts and medical interactions. It is imperative for healthcare systems to implement tailored care strategies beyond standard protocols to proactively address their varied emotional landscapes and physical concerns with an enhanced awareness of cultural sensitivities. Specialised training for healthcare providers should be devised to recognise and respond to the unique grief processes. Comprehensive support systems should be established to significantly enhance the recovery journey by providing essential resources and community connections.


Asunto(s)
Pesar , Investigación Cualitativa , Apoyo Social , Mortinato , Humanos , Femenino , Mortinato/psicología , Adulto , China , Embarazo , Emociones , Adulto Joven , Pueblos del Este de Asia
8.
Int J Mol Sci ; 25(17)2024 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-39273657

RESUMEN

The significance of hypoxia at the maternal-fetal interface is proven to be self-explanatory in the context of pregnancy. During the first trimester, low oxygen conditions play a crucial role in processes such as angiogenesis, trophoblast invasion and differentiation, and immune regulation. Recently, there has been increasing research on decidual macrophages, which contribute to the maintenance of immune tolerance, placental and fetal vascular development, and spiral artery remodeling, to investigate the effects of hypoxia on their biological behaviors. On these grounds, this review describes the dynamic changes in oxygen levels at the maternal-fetal interface throughout gestation, summarizing current knowledge on how the hypoxic environment sustains a successful pregnancy by regulating retention, differentiation and efferocytosis of decidual macrophages. Additionally, we explore the relationship between spontaneous miscarriages and an abnormal hypoxia-macrophage axis, shedding light on the underlying mechanisms. However, further studies are essential to elucidate these pathways in greater detail and to develop targeted interventions that could improve pregnancy outcomes.


Asunto(s)
Aborto Espontáneo , Decidua , Hipoxia , Macrófagos , Femenino , Humanos , Embarazo , Macrófagos/metabolismo , Macrófagos/inmunología , Aborto Espontáneo/metabolismo , Decidua/metabolismo , Hipoxia/metabolismo , Animales
9.
EMBO J ; 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39261664

RESUMEN

In preparation for a potential pregnancy, the endometrium of the uterus changes into a temporary structure called the decidua. Senescent decidual stromal cells (DSCs) are enriched in the decidua during decidualization, but the underlying mechanisms of this process remain unclear. Here, we performed single-cell RNA transcriptomics on ESCs and DSCs and found that cell senescence during decidualization is accompanied by increased levels of the branched-chain amino acid (BCAA) transporter SLC3A2. Depletion of leucine, one of the branched-chain amino acids, from cultured media decreased senescence, while high leucine diet resulted in increased senescence and high rates of embryo loss in mice. BCAAs induced senescence in DSCs via the p38 MAPK pathway. In contrast, TNFSF14+ decidual natural killer (dNK) cells were found to inhibit DSC senescence by interacting with its ligand TNFRSF14. As in mice fed high-leucine diets, both mice with NK cell depletion and Tnfrsf14-deficient mice with excessive uterine senescence experienced adverse pregnancy outcomes. Further, we found excessive uterine senescence, SLC3A2-mediated BCAA intake, and insufficient TNFRSF14 expression in the decidua of patients with recurrent spontaneous abortion. In summary, this study suggests that dNK cells maintain senescence homeostasis of DSCs via TNFSF14/TNFRSF14, providing a potential therapeutic strategy to prevent DSC senescence-associated spontaneous abortion.

10.
Mol Biol Rep ; 51(1): 976, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39259343

RESUMEN

OBJECTIVE: Bidirectional influences between senescence and inflammation are newly discovered. This study aimed to clarify the roles and mechanism of Porphyromonas gingivalis (P. gingivalis) in exacerbating senescence in human gingival fibroblasts (HGFs). DESIGN: Subgingival plaque and gingivae were collected from twenty-four periodontitis patients and eighteen periodontally healthy subjects. Quantities of P. gingivalis in subgingival plaque were explored using real-time PCR and the expressions of p53, p21 and SIRT6 in gingivae were detected by IHC. Moreover, senescence in HGFs was induced by P. gingivalis lipopolysaccharide (LPS) and the expressions of senescence-related ß-galactosidase (SA-ß-gal), p53, p21 and senescence-associated secretory phenotype (IL-6 and IL-8) with or without treatment by SIRT6 activator UBCS039 were explored by IHC, western blot and ELISA, respectively. In addition, the levels of SIRT6, Nrf2, HO-1 and reactive oxygen species (ROS) were examined by western blot and flow cytometry. RESULTS: Quantities of P. gingivalis in subgingival plaque and semi-quantitative scores of p53 and p21 in gingivae of periodontitis patients were increased compared with healthy controls (p < 0.05), while SIRT6 score in periodontitis patients was decreased (p < 0.001). Quantities of P. gingivalis were positively correlated with p53 and p21 scores (0.6 < r < 0.9, p < 0.01), and negatively correlated with SIRT6 score (-0.9 < r<-0.6, p < 0.01). Moreover, P. gingivalis LPS increased the levels of SA-ß-gal, p53, p21, IL-6, IL-8 and ROS and decreased the levels of SIRT6, Nrf2 and HO-1 in HGFs, which was rescued by UBCS039 (p < 0.05). CONCLUSIONS: P. gingivalis LPS could induce senescence of HGFs, which could be reversed by SIRT6 via Nrf2-HO-1 signaling pathway.


Asunto(s)
Senescencia Celular , Fibroblastos , Encía , Factor 2 Relacionado con NF-E2 , Porphyromonas gingivalis , Especies Reactivas de Oxígeno , Sirtuinas , Humanos , Porphyromonas gingivalis/patogenicidad , Encía/microbiología , Encía/metabolismo , Fibroblastos/metabolismo , Sirtuinas/metabolismo , Sirtuinas/genética , Masculino , Femenino , Adulto , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Especies Reactivas de Oxígeno/metabolismo , Lipopolisacáridos/farmacología , Periodontitis/microbiología , Periodontitis/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Persona de Mediana Edad , Hemo-Oxigenasa 1/metabolismo , Hemo-Oxigenasa 1/genética , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética
11.
Nat Commun ; 15(1): 6741, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39112466

RESUMEN

The development of highly efficient and durable alkaline hydrogen evolution reaction (HER) catalysts is crucial for achieving high-performance practical anion exchange membrane water electrolyzer (AEMWE) at ampere-level current density. Herein, we report a design concept by employing Ga single atoms as an electronic bridge to stabilize the Ru clusters for boosting alkaline HER performance in practical AEMWE. Experimental and theoretical results collectively reveal that the bridged Ga sites trigger strong metal-support interaction for the homogeneous distribution of Ru clusters with high density, as well as optimize the Ru-H bond strength due to the electron transfer between Ru and Ga for enhanced intrinsic HER activity. Moreover, the oxophilic Ga sites near the Ru clusters tend to adsorb the hydroxyl species and accelerate the water dissociation for sufficient proton supplement in an alkaline medium. The Ru-GaSA/N-C catalyst exhibits a low overpotential of 4 ± 1 mV (10 mA cm-2) and high mass activity of 9.3 ± 0.5 A mg-1Ru at -0.05 V vs RHE. In particular, the Ru-GaSA/N-C-based AEMWE in 1 M KOH delivers a voltage of only 1.74 V to reach an industrial current density of 1 A cm-2, and can steadily operate at 1 A cm-2 for more than 170 h.

12.
Medicine (Baltimore) ; 103(32): e39277, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39121268

RESUMEN

RATIONALE: Traumatic brain injury frequently leads to prolonged coma, posing significant medical management challenges. Complementary therapies, including traditional Chinese herbal medicine, have been investigated as potential interventions in comatose patients. Chinese aromatic herbs, such as Borneolum (Bingpian), Moschus (Shexiang), and Acori tatarinowii rhizoma (Shichangpu), have long been believed to be "resuscitation with aromatics" based on traditional Chinese medicines theory. PATIENT CONCERNS: A 16-year-old male was admitted to the intensive rehabilitation unit for further treatment due to prolonged coma and frequent seizures following traumatic brain injury. DIAGNOSES: Western medicine diagnosed the patient as coma, diffuse axonal injury, and epilepsy. According to traditional Chinese medicine theory, the syndrome differentiation indicates a Yin-closed disease. INTERVENTIONS: According to the patient's condition, we use the Chinese aromatic herbs as a complementary therapy. OUTCOMES: Following a month-long administration, the patient's consciousness and electroencephalogram (EEG) background progressively improved. A 6-month follow-up demonstrated full arousal, though with ambulatory EEG revealing mild to moderate abnormality in the background. LESSONS: The addition of Chinese aromatic herbs appears to have a beneficial effect on the patient's consciousness and EEG background. This could be attributed to the herbs' inherent pharmacological properties, as well as their potential to enhance the permeability of the blood-brain barrier to other drugs. This makes them a promising option for complementary therapy.


Asunto(s)
Coma , Medicamentos Herbarios Chinos , Humanos , Masculino , Coma/etiología , Coma/tratamiento farmacológico , Coma/terapia , Medicamentos Herbarios Chinos/uso terapéutico , Adolescente , Electroencefalografía , Terapias Complementarias/métodos , Lesiones Traumáticas del Encéfalo/complicaciones , Medicina Tradicional China/métodos
13.
Mar Pollut Bull ; 207: 116817, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39137694

RESUMEN

Ship transportation is a primary mode for global trade and cargo transport, yet even minor discrepancies can lead to ship accidents, causing severe secondary environmental pollution. Maritime accidents involve complex and numerous factors. Formal Concept Analysis (FCA) can identify the key contributing factors and their impact levels by eliminating homogenization factors in maritime accidents. This study constructs an innovative FCA model of ship accidents in Chinese waters, utilizing 172 ship accident reports released by the China Maritime Safety Administration. The analysis reveals seven reduced sets and 23 diagnostic rules of ship accidents. Results show that failed ship registration/security inspection, deficient nautical data and instruments, and management issues are the most critical factors. Three accident chains are identified and corresponding mitigation strategies are proposed to reduce potential pollution from ship accidents. These strategies offer significant reference value for preventing ship accidents and reducing their environmental impact in China and globally.


Asunto(s)
Navíos , China , Modelos Teóricos , Accidentes , Contaminación del Agua/prevención & control , Contaminación del Agua/estadística & datos numéricos , Monitoreo del Ambiente
14.
Food Chem ; 461: 140957, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39182336

RESUMEN

The aim of this study was to fabricate novel transglutaminase (TGase)-mediated glycosylated whey protein isolate (WPI) nanoparticles for the encapsulation and delivery of curcumin. The influences of glycosylation on the physiochemical properties, stability, bioavailability, and antioxidant properties of WPI nanoparticles loaded with curcumin were investigated. Composite nanoparticles exhibited uniform distribution and small particle sizes. The main driving forces for the formation of curcumin nanoparticles were electrostatic interactions, hydrogen bonding, and hydrophobic interactions. The encapsulation and loading efficiency of curcumin after TGase-type glycosylation were significantly increased in comparison to WPI-curcumin nanoparticles. Glycosylated WPI-curcumin nanoparticles had stronger antioxidant properties and stability to resist external environmental changes than WPI-curcumin nanoparticles. In addition, glycosylated WPI-curcumin nanoparticles showed a controlled release and enhanced curcumin bioavailability in vitro gastrointestinal digestion. This study provides novel insights for self-assembled glycosylated protein nanoparticles as delivery systems for protecting hydrophobic nutrients.


Asunto(s)
Curcumina , Nanopartículas , Transglutaminasas , Proteína de Suero de Leche , Curcumina/química , Curcumina/metabolismo , Proteína de Suero de Leche/química , Proteína de Suero de Leche/metabolismo , Nanopartículas/química , Glicosilación , Transglutaminasas/química , Transglutaminasas/metabolismo , Tamaño de la Partícula , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Composición de Medicamentos , Disponibilidad Biológica , Antioxidantes/química
15.
Nanomicro Lett ; 16(1): 277, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39190236

RESUMEN

Significant challenges are posed by the limitations of gas sensing mechanisms for trace-level detection of ammonia (NH3). In this study, we propose to exploit single-atom catalytic activation and targeted adsorption properties to achieve highly sensitive and selective NH3 gas detection. Specifically, Ni single-atom active sites based on N, C coordination (Ni-N-C) were interfacially confined on the surface of two-dimensional (2D) MXene nanosheets (Ni-N-C/Ti3C2Tx), and a fully flexible gas sensor (MNPE-Ni-N-C/Ti3C2Tx) was integrated. The sensor demonstrates a remarkable response value to 5 ppm NH3 (27.3%), excellent selectivity for NH3, and a low theoretical detection limit of 12.1 ppb. Simulation analysis by density functional calculation reveals that the Ni single-atom center with N, C coordination exhibits specific targeted adsorption properties for NH3. Additionally, its catalytic activation effect effectively reduces the Gibbs free energy of the sensing elemental reaction, while its electronic structure promotes the spill-over effect of reactive oxygen species at the gas-solid interface. The sensor has a dual-channel sensing mechanism of both chemical and electronic sensitization, which facilitates efficient electron transfer to the 2D MXene conductive network, resulting in the formation of the NH3 gas molecule sensing signal. Furthermore, the passivation of MXene edge defects by a conjugated hydrogen bond network enhances the long-term stability of MXene-based electrodes under high humidity conditions. This work achieves highly sensitive room-temperature NH3 gas detection based on the catalytic mechanism of Ni single-atom active center with N, C coordination, which provides a novel gas sensing mechanism for room-temperature trace gas detection research.

16.
Biochim Biophys Acta Mol Basis Dis ; 1870(8): 167480, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39209235

RESUMEN

Electroacupuncture has been demonstrated to mitigate endotoxin-induced acute lung injury by enhancing mitochondrial function. This study investigates whether electroacupuncture confers lung protection through the regulation of mitochondrial quality control mediated by heme oxygenase-1 (HO-1) and the mitochondrial inner membrane protein MIC60. HO-1, an inducible stress protein, is crucial for maintaining mitochondrial homeostasis and protecting against lung injury. MIC60, a key component of the mitochondrial contact site and cristae organizing system, supports mitochondrial integrity. We employed genetic knockout/silencing and cell transfection techniques to model lipopolysaccharide (LPS)-induced lung injury, assessing changes in mitochondrial structure, reactive oxygen species (ROS) production, mitochondrial membrane potential (MMP), and the expression of proteins essential for mitochondrial quality control. Our findings reveal that electroacupuncture alleviates endotoxin-induced acute lung injury and associated mitochondrial dysfunction, as evidenced by reductions in lung injury scores, decreased ROS production, and suppressed expression of proteins involved in mitochondrial fission and mitophagy. Additionally, electroacupuncture enhanced MMP and upregulated proteins that facilitate mitochondrial fusion and biogenesis. Importantly, the protective effects of electroacupuncture were reduced in models with Hmox1 knockout or Mic60 silencing, and in macrophages transfected with Hmox1-siRNA or Mic60-siRNA. Moreover, HO-1 was found to influence MIC60 expression during electroacupuncture preconditioning and LPS challenge, demonstrating that these proteins not only co-localize but also interact directly. In conclusion, electroacupuncture effectively modulates mitochondrial quality control through the HO-1/MIC60 signaling pathway, offering an adjunctive therapeutic strategy to ameliorate endotoxin-induced acute lung injury in both in vivo and in vitro settings.

17.
Chem Sci ; 15(33): 13486-13494, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39183916

RESUMEN

Nucleophilic substitution is one of the most fundamental chemical reactions, and the pursuit of high reaction rates of the reaction is one of the ultimate goals in catalytic and organic chemistry. The reaction barrier of the nucleophilic substitution originates from the highly polar nature of the transition state that can be stabilized under the electric field created by the solvent environment. However, the intensity of the induced solvent-electric field is relatively small due to the random orientation of solvent molecules, which hinders the catalytic effects and restricts the reaction rates. This work shows that oriented external electric fields applied within a confined nanogap between two nanoscopic tips could accelerate the Menshutkin reaction by more than four orders of magnitude (over 39 000 times). The theoretical calculations reveal that the electric field inside the nanogap reduces the energy barrier to increase the reaction rate. Our work suggests the great potential of electrostatic catalysis for green synthesis in the future.

18.
Antioxidants (Basel) ; 13(8)2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39199268

RESUMEN

Lead (Pb) is a common environmental neurotoxicant that results in abnormal neurobehavior and impaired memory. Avicularin (AVL), the main dietary flavonoid found in several plants and fruits, exhibits neuroprotective and hepatoprotective properties. In the present study, the effects of AVL on Pb-induced neurotoxicity were evaluated using ICR mice to investigate the molecular mechanisms behind its protective effects. Our study has demonstrated that AVL treatment significantly ameliorated memory impairment induced by lead (Pb). Furthermore, AVL mitigated Pb-triggered neuroinflammation, ferroptosis, and oxidative stress. The inhibition of Pb-induced oxidative stress in the brain by AVL was evidenced by the reduction in malondialdehyde (MDA) levels and the enhancement of glutathione (GSH) and glutathione peroxidase (GPx) activities. Additionally, in the context of lead-induced neurotoxicity, AVL mitigated ferroptosis by increasing the expression of GPX4 and reducing ferrous iron levels (Fe2+). AVL increased the activities of glycogenolysis rate-limiting enzymes HK, PK, and PYG. Additionally, AVL downregulated TNF-α and IL-1ß expression while concurrently enhancing the activations of AMPK, Nrf2, HO-1, NQO1, PSD-95, SNAP-25, CaMKII, and CREB in the brains of mice. The findings from this study suggest that AVL mitigates the memory impairment induced by Pb, which is associated with the AMPK/Nrf2 pathway and ferroptosis.

19.
Animals (Basel) ; 14(16)2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39199899

RESUMEN

Ram sperm undergo a sequence of physiological and biochemical changes collectively termed as capacitation to perform oocyte fertilization. However, the protein changes induced by capacitation remain in need of further exploration. Thus, the present study investigated the comparative proteomic profiling in ram spermatozoa under non-capacitating (NC) and capacitating (CAP) conditions in vitro using a liquid chromatography-tandem mass spectrometry combined with tandem mass tag labeling strategy. As a results, 2050 proteins were identified and quantified; 348 of them were differentially abundant, with 280 of the proteins upregulated and 68 of the proteins downregulated between the CAP and NC spermatozoa, respectively. Functional enrichment analysis indicated that the differentially abundant proteins Prune Exopolyphosphatase 1, Galactose-1-Phosphate Uridylyltransferase, and ATP Citrate Lyase were strictly related to energy production and conversion, and Phosphoglycolate phosphatase, Glucosamine-6-Phosphate Deaminase 1 and 2 were related to metabolism, RNA processing, and vesicular transport pathways. Furthermore, the networks of protein-protein interaction indicated a strong interaction among these differential proteins in annotated pathways such as ubiquitin and transport metabolism. Our findings indicate that capacitation progress might be regulated through different pathways, providing insights into mechanisms involved in ram sperm capacitation and fertility.

20.
Acad Radiol ; 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39183131

RESUMEN

RATIONALE AND OBJECTIVES: This study aims to explore the feasibility of the deep learning radiomics nomogram (DLRN) for predicting tumor status and axillary lymph node metastasis (ALNM) after neoadjuvant chemotherapy (NAC) in patients with breast cancer. Additionally, we employ a Cox regression model for survival analysis to validate the effectiveness of the fusion algorithm. MATERIALS AND METHODS: A total of 243 patients who underwent NAC were retrospectively included between October 2014 and July 2022. The DLRN integrated clinical characteristics as well as radiomics and deep transfer learning features extracted from ultrasound (US) images. The diagnostic performance of DLRN was evaluated by constructing ROC curves, and the clinical usefulness of models was assessed using decision curve analysis (DCA). A survival model was developed to validate the effectiveness of the fusion algorithm. RESULTS: In the training cohort, the DLRN yielded area under the receiver operating characteristic curve values of 0.984 and 0.985 for the tumor and LNM, while 0.892 and 0.870, respectively, in the test cohort. The consistency indices (C-index) of the nomogram were 0.761 and 0.731, respectively, in the training and test cohorts. The Kaplan-Meier survival curves showed that patients in the high-risk group had significantly poorer overall survival than patients in the low-risk group (P < 0.05). CONCLUSION: The US-based DLRN model could hold promise as clinical guidance for predicting the status of tumors and LNM after NAC in patients with breast cancer. This fusion model can also predict the prognosis of patients, which could help clinicians make better clinical decisions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA