Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Antimicrob Agents Chemother ; : e0064524, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39194262

RESUMEN

In view of the urgent need for new antibiotics to treat human infections caused by multidrug-resistant pathogens, drug repurposing is gaining strength due to the relatively low research costs and shorter clinical trials. Such is the case of artemisinin, an antimalarial drug that has recently been shown to display activity against Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis. To gain insight into how Mtb is affected by artemisinin, we used RNAseq to assess the impact of artemisinin on gene expression profiles, revealing the induction of several efflux pumps and the KstR2 regulon. To anticipate the artemisinin resistance-conferring mutations that could arise in clinical Mtb strains, we performed an in vitro evolution experiment in the presence of lethal concentrations of artemisinin. We obtained artemisinin-resistant isolates displaying different growth kinetics and drug phenotypes, suggesting that resistance evolved through different pathways. Whole-genome sequencing of nine isolates revealed alterations in the glpK and glpQ1 genes, both involved in glycerol metabolism, in seven and one strains, respectively. We then constructed a glpK mutant and found that loss of glpK increases artemisinin resistance only when glycerol is present as a major carbon source. Our results suggest that mutations in glycerol catabolism genes could be selected during the evolution of resistance to artemisinin when glycerol is available as a carbon source. These results add to recent findings of mutations and phase variants that reduce drug efficacy in carbon-source-dependent ways.

2.
J Ethnopharmacol ; 333: 118500, 2024 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-38944359

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: African wormwood (Artemisia afra Jacq. ex Willd.) has been used traditionally in southern Africa to treat illnesses causing fever and was recently shown to possess anti-tuberculosis activity. As tuberculosis is an endemic cause of fever in southern Africa, this suggests that the anti-tubercular activity of A. afra may have contributed to its traditional medicinal use. AIM OF THE STUDY: Tuberculosis, caused by Mycobacterium tuberculosis (Mtb), is a deadly and debilitating disease globally affecting millions annually. Emerging drug-resistant Mtb strains endanger the efficacy of the current therapies employed to treat tuberculosis; therefore, there is an urgent need to develop novel drugs to combat this disease. Given the reported activity of A. afra against Mtb, we sought to determine the mechanisms by which A. afra inhibits and kills this bacterium. MATERIALS AND METHODS: We used transcriptomics to investigate the impact of Artemisia spp. extracts on Mtb physiology. We then used chromatographic fractionation and biochemometric analyses to identify a bioactive fractions of A. afra extracts and identify an active compound. RESULTS: Transcriptomic analysis revealed that A. afra exerts different effects on Mtb compared to A. annua or artemisinin, suggesting that A. afra possesses other phytochemicals with unique modes of action. A biochemometric study of A. afra resulted in the isolation of an O-methylflavone (1), 5-hydroxy-7-methoxy-2-(4-methoxyphenyl)chromen-4-one, which displayed considerable activity against Mtb strain mc26230 in both log phase growth and metabolically downshifted hypoxic cultures. CONCLUSIONS: The present study demonstrated that an O-methylflavone constituent of Artemisia afra explains part of the activity of this plant against Mtb. This result contributes to a mechanistic understanding of the reported anti-tubercular activity of A. afra and highlights the need for further study of this traditional medicinal plant and its active compounds.


Asunto(s)
Antituberculosos , Artemisia , Flavonas , Mycobacterium tuberculosis , Extractos Vegetales , Artemisia/química , Mycobacterium tuberculosis/efectos de los fármacos , Antituberculosos/farmacología , Antituberculosos/aislamiento & purificación , Extractos Vegetales/farmacología , Extractos Vegetales/química , Flavonas/farmacología , Flavonas/aislamiento & purificación , Flavonoides/farmacología , Flavonoides/aislamiento & purificación
3.
J Biol Chem ; 299(11): 105312, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37802316

RESUMEN

The mechanisms and regulation of RNA degradation in mycobacteria have been subject to increased interest following the identification of interplay between RNA metabolism and drug resistance. Mycobacteria encode multiple ribonucleases predicted to participate in mRNA degradation and/or processing of stable RNAs. RNase E is hypothesized to play a major role in mRNA degradation because of its essentiality in mycobacteria and its role in mRNA degradation in gram-negative bacteria. Here, we defined the impact of RNase E on mRNA degradation rates transcriptome-wide in the nonpathogenic model Mycolicibacterium smegmatis. RNase E played a rate-limiting role in degradation of the transcripts encoded by at least 89% of protein-coding genes, with leadered transcripts often being more affected by RNase E repression than leaderless transcripts. There was an apparent global slowing of transcription in response to knockdown of RNase E, suggesting that M. smegmatis regulates transcription in responses to changes in mRNA degradation. This compensation was incomplete, as the abundance of most transcripts increased upon RNase E knockdown. We assessed the sequence preferences for cleavage by RNase E transcriptome-wide in M. smegmatis and Mycobacterium tuberculosis and found a consistent bias for cleavage in C-rich regions. Purified RNase E had a clear preference for cleavage immediately upstream of cytidines, distinct from the sequence preferences of RNase E in gram-negative bacteria. We furthermore report a high-resolution map of mRNA cleavage sites in M. tuberculosis, which occur primarily within the RNase E-preferred sequence context, confirming that RNase E has a broad impact on the M. tuberculosis transcriptome.


Asunto(s)
Mycobacterium smegmatis , ARN Mensajero , Mycobacterium smegmatis/enzimología , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/metabolismo , ARN Mensajero/metabolismo , ARN Bacteriano/metabolismo
4.
bioRxiv ; 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37873198

RESUMEN

Tuberculosis, caused by Mycobacterium tuberculosis (Mtb), is a deadly and debilitating disease globally affecting millions annually. Emerging drug-resistant Mtb strains endanger the efficacy of the current combination therapies employed to treat tuberculosis; therefore, there is an urgent need to develop novel drugs to combat this disease. Artemisia afra is used traditionally in southern Africa to treat malaria and recently has shown anti tuberculosis activity. This genus synthesizes a prodigious number of phytochemicals, many of which have demonstrated human health effects. Transcriptomic analysis revealed that A. afra exerts different effects on Mtb compared to A. annua or the well-known antimalarial artemisinin, suggesting other phytochemicals present in A. afra with unique modes of action. A biochemometric study of A. afra resulted in the isolation of a methoxylated flavone (1), which displayed considerable activity against Mtb strain mc26230. Compound 1 had an MIC of 312.5 µg/mL and yielded no viable colonies after 6 days of treatment. In addition, 1 was effective in killing hypoxic Mtb cultures, with no viable cultures after 2 days of treatment. This suggested that A. afra is a source of potentially powerful anti-Mtb phytochemicals with novel mechanisms of action.

5.
PLoS Pathog ; 19(8): e1011575, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37603560

RESUMEN

Mycobacterium abscessus causes severe disease in patients with cystic fibrosis. Little is known in M. abscessus about the roles of small regulatory RNAs (sRNA) in gene regulation. We show that the sRNA B11 controls gene expression and virulence-associated phenotypes in this pathogen. B11 deletion from the smooth strain ATCC_19977 produced a rough strain, increased pro-inflammatory signaling and virulence in multiple infection models, and increased resistance to antibiotics. Examination of clinical isolate cohorts identified isolates with B11 mutations or reduced expression. We used RNAseq and proteomics to investigate the effects of B11 on gene expression and test the impact of mutations found in clinical isolates. Over 200 genes were differentially expressed in the deletion mutant. Strains with the clinical B11 mutations showed expression trends similar to the deletion mutant, suggesting partial loss of function. Among genes upregulated in the B11 mutant, there was a strong enrichment for genes with B11-complementary sequences in their predicted ribosome binding sites (RBS), consistent with B11 functioning as a negative regulator that represses translation via base-pairing to RBSs. Comparing the proteomes similarly revealed that upregulated proteins were strongly enriched for B11-complementary sequences. Intriguingly, genes upregulated in the absence of B11 included components of the ESX-4 secretion system, critical for M. abscessus virulence. Many of these genes had B11-complementary sequences at their RBSs, which we show is sufficient to mediate repression by B11 through direct binding. Altogether, our data show that B11 acts as a direct negative regulator and mediates (likely indirect) positive regulation with pleiotropic effects on gene expression and clinically important phenotypes in M. abscessus. The presence of hypomorphic B11 mutations in clinical strains is consistent with the idea that lower B11 activity may be advantageous for M. abscessus in some clinical contexts. This is the first report on an sRNA role in M. abscessus.


Asunto(s)
Mycobacterium abscessus , ARN Pequeño no Traducido , Mycobacterium abscessus/genética , Virulencia/genética , Antibacterianos , ARN Pequeño no Traducido/genética
6.
JACS Au ; 3(4): 1017-1028, 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37124305

RESUMEN

A fluorescence turn-on probe, an azide-masked and trehalose-derivatized carbazole (Tre-Cz), was developed to image mycobacteria. The fluorescence turn-on is achieved by photoactivation of the azide, which generates a fluorescent product through an efficient intramolecular C-H insertion reaction. The probe is highly specific for mycobacteria and could image mycobacteria in the presence of other Gram-positive and Gram-negative bacteria. Both the photoactivation and detection can be accomplished using a handheld UV lamp, giving a limit of detection of 103 CFU/mL, which can be visualized by the naked eye. The probe was also able to image mycobacteria spiked in sputum samples, although the detection sensitivity was lower. Studies using heat-killed, stationary-phase, and isoniazid-treated mycobacteria showed that metabolically active bacteria are required for the uptake of Tre-Cz. The uptake decreased in the presence of trehalose in a concentration-dependent manner, indicating that Tre-Cz hijacked the trehalose uptake pathway. Mechanistic studies demonstrated that the trehalose transporter LpqY-SugABC was the primary pathway for the uptake of Tre-Cz. The uptake decreased in the LpqY-SugABC deletion mutants ΔlpqY, ΔsugA, ΔsugB, and ΔsugC and fully recovered in the complemented strain of ΔsugC. For the mycolyl transferase antigen 85 complex (Ag85), however, only a slight reduction of uptake was observed in the Ag85 deletion mutant ΔAg85C, and no incorporation of Tre-Cz into the outer membrane was observed. The unique intracellular incorporation mechanism of Tre-Cz through the LpqY-SugABC transporter, which differs from other trehalose-based fluorescence probes, unlocks potential opportunities to bring molecular cargoes to mycobacteria for both fundamental studies and theranostic applications.

7.
Pathogens ; 12(2)2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36839499

RESUMEN

Mycobacterium tuberculosis (Mtb) is a deadly pathogen and causative agent of human tuberculosis, causing ~1.5 million deaths every year. The increasing drug resistance of this pathogen necessitates novel and improved treatment strategies. A crucial aspect of the host-pathogen interaction is bacterial nutrition. In this study, Artemisia annua and Artemisia afra dichloromethane extracts were tested for bactericidal activity against Mtb strain mc26230 under hypoxia and various infection-associated carbon sources (glycerol, glucose, and cholesterol). Both extracts showed significant bactericidal activity against Mtb, regardless of carbon source. Based on killing curves, A. afra showed the most consistent bactericidal activity against Mtb for all tested carbon sources, whereas A. annua showed the highest bactericidal activity in 7H9 minimal media with glycerol. Both extracts retained their bactericidal activity against Mtb under hypoxic conditions. Further investigations are required to determine the mechanism of action of these extracts and identify their active constituent compounds.

8.
PLoS Pathog ; 18(7): e1010705, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35830479

RESUMEN

Despite the existence of well-characterized, canonical mutations that confer high-level drug resistance to Mycobacterium tuberculosis (Mtb), there is evidence that drug resistance mechanisms are more complex than simple acquisition of such mutations. Recent studies have shown that Mtb can acquire non-canonical resistance-associated mutations that confer survival advantages in the presence of certain drugs, likely acting as stepping-stones for acquisition of high-level resistance. Rv2752c/rnj, encoding RNase J, is disproportionately mutated in drug-resistant clinical Mtb isolates. Here we show that deletion of rnj confers increased tolerance to lethal concentrations of several drugs. RNAseq revealed that RNase J affects expression of a subset of genes enriched for PE/PPE genes and stable RNAs and is key for proper 23S rRNA maturation. Gene expression differences implicated two sRNAs and ppe50-ppe51 as important contributors to the drug tolerance phenotype. In addition, we found that in the absence of RNase J, many short RNA fragments accumulate because they are degraded at slower rates. We show that the accumulated transcript fragments are targets of RNase J and are characterized by strong secondary structure and high G+C content, indicating that RNase J has a rate-limiting role in degradation of highly structured RNAs. Taken together, our results demonstrate that RNase J indirectly affects drug tolerance, as well as reveal the endogenous roles of RNase J in mycobacterial RNA metabolism.


Asunto(s)
Mycobacterium tuberculosis , Ribonucleasas , Tolerancia a Medicamentos , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribonucleasas/genética , Ribonucleasas/metabolismo
9.
Front Microbiol ; 13: 1025250, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36687599

RESUMEN

Undergraduate instructional biology laboratories are typically taught within two paradigms. Some labs focus on protocols and techniques delivered in "cookbook" format with defined experimental outcomes. There is increasing momentum to alternatively employ student-driven, open-ended, and discovery-based strategies, often via course-based undergraduate research experiences (CUREs) using crowd-sourcing initiatives. A fraction of students also participate in funded research in faculty research labs, where they have opportunities to work on projects designed to expand the frontiers of human knowledge. These experiences are widely recognized as valuable but are not scalable, as most institutions have many more undergraduates than research lab positions. We sought to address this gap through our department's curriculum by creating an opportunity for students to participate in the real-world research process within a laboratory course. We conceived, developed, and delivered an authentic, guided research experience to students in an upper-level molecular biology laboratory course. We refer to this model as a "research program-linked CURE." The research questions come directly from a faculty member's research lab and evolve along with that research program. Students study post-transcriptional regulation in mycobacteria. We use current molecular biology methodologies to test hypotheses like "UTRs affect RNA and protein expression levels," "there is functional redundancy among RNA helicases," and "carbon starvation alters mRNA 5' end chemistries." We conducted standard assessments and developed a customized "Skills and Concepts Inventory" survey to gauge how well the course met our student learning outcomes. We report the results of our assessments and describe challenges addressed during development and execution of the course, including organizing activities to fit within an instructional lab, balancing breadth with depth, and maintaining authenticity while giving students the experience of obtaining interpretable and novel results. Our data suggest student learning was enhanced through this truly authentic research approach. Further, students were able to perceive they were participants and contributors within an active research paradigm. Students reported increases in their self-identification as scientists, and a positive impact on their career trajectories. An additional benefit was reciprocation back to the funded research laboratory, by funneling course alumni, results, materials, and protocols.

10.
Methods Mol Biol ; 2314: 513-531, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34235668

RESUMEN

Next-generation sequencing technologies facilitate the analysis of multiple important properties of transcriptomes in addition to gene expression levels. Here, we describe a method for mapping RNA 5' ends in Mycobacterium tuberculosis and Mycobacterium smegmatis, which allows the determination of transcription start sites (TSSs), comparative analysis of promoter usage under different conditions, and mapping of endoribonucleolytic cleavage sites. We describe in detail the procedures for constructing RNA sequencing libraries appropriate for RNA 5' end mapping using an Illumina sequencing platform, as well as bioinformatic procedures for data analysis.


Asunto(s)
Regiones no Traducidas 5'/genética , Mycobacterium tuberculosis/genética , Regiones Promotoras Genéticas , Procesamiento Postranscripcional del ARN , ARN Bacteriano/genética , Análisis de Secuencia de ARN/métodos , Sitio de Iniciación de la Transcripción , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , ARN Bacteriano/análisis , Transcriptoma
11.
Front Microbiol ; 11: 2111, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33013770

RESUMEN

Bacteria have a remarkable ability to sense environmental changes, swiftly regulating their transcriptional and posttranscriptional machinery as a response. Under conditions that cause growth to slow or stop, bacteria typically stabilize their transcriptomes in what has been shown to be a conserved stress response. In recent years, diverse studies have elucidated many of the mechanisms underlying mRNA degradation, yet an understanding of the regulation of mRNA degradation under stress conditions remains elusive. In this review we discuss the diverse mechanisms that have been shown to affect mRNA stability in bacteria. While many of these mechanisms are transcript-specific, they provide insight into possible mechanisms of global mRNA stabilization. To that end, we have compiled information on how mRNA fate is affected by RNA secondary structures; interaction with ribosomes, RNA binding proteins, and small RNAs; RNA base modifications; the chemical nature of 5' ends; activity and concentration of RNases and other degradation proteins; mRNA and RNase localization; and the stringent response. We also provide an analysis of reported relationships between mRNA abundance and mRNA stability, and discuss the importance of stress-associated mRNA stabilization as a potential target for therapeutic development.

12.
BMC Res Notes ; 13(1): 462, 2020 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-32993774

RESUMEN

OBJECTIVE: Restriction-Modification (R-M) systems are ubiquitous in bacteria and were considered for years as rudimentary immune systems that protect bacterial cells from foreign DNA. Currently, these R-M systems are recognized as important players in global gene expression and other cellular processes such us virulence and evolution of genomes. Here, we report the role of the unique DNA methyltransferase in Mycobacterium smegmatis, which shows a moderate degree of sequence similarity to MamA, a previously characterized methyltransferase that affects gene expression in Mycobacterium tuberculosis and is important for survival under hypoxic conditions. RESULTS: We found that depletion of mamA levels impairs growth and produces elongated cell bodies. Microscopy revealed irregular septation and unevenly distributed DNA, with large areas devoid of DNA and small DNA-free cells. Deletion of MSMEG_3214, a predicted endonuclease-encoding gene co-transcribed with mamA, restored the WT growth phenotype in a mamA-depleted background. Our results suggest that the mamA-depletion phenotype can be explained by DNA cleavage by the apparent cognate restriction endonuclease MSMEG_3214. In addition, in silico analysis predicts that both MamA methyltransferase and MSMEG_3214 endonuclease recognize the same palindromic DNA sequence. We propose that MamA and MSMEG_3214 constitute a previously undescribed R-M system in M. smegmatis.


Asunto(s)
Proteínas Bacterianas , Enzimas de Restricción del ADN , Mycobacterium smegmatis , Proteínas Bacterianas/genética , Mycobacterium smegmatis/enzimología , Mycobacterium smegmatis/genética , Mycobacterium tuberculosis , Virulencia
13.
J Ethnopharmacol ; 262: 113191, 2020 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-32730878

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Emergence of drug-resistant and multidrug-resistant Mycobacterium tuberculosis (Mtb) strains is a major barrier to tuberculosis (TB) eradication, as it leads to longer treatment regimens and in many cases treatment failure. Thus, there is an urgent need to explore new TB drugs and combinations, in order to shorten TB treatment and improve outcomes. Here, we evaluated the potential of two Asian and African traditional medicinal plants, Artemisia annua, a natural source of artemisinin (AN), and Artemisia afra, as sources of novel antitubercular agents. AIM OF THE STUDY: Our goal was to measure the activity of A. annua and A. afra extracts against Mtb as potential natural and inexpensive therapies for TB treatment, or as sources of compounds that could be further developed into effective treatments. MATERIALS AND METHODS: The minimum inhibitory concentrations (MICs) of A. annua and A. afra dichloromethane extracts were determined, and concentrations above the MICs were used to evaluate their ability to kill Mtb and Mycobacterium abscessus in vitro. RESULTS: Previous studies showed that A. annua and A. afra inhibit Mtb growth. Here, we show for the first time that Artemisia extracts have a strong bactericidal activity against Mtb. The killing effect of A. annua was much stronger than equivalent concentrations of pure AN, suggesting that A. annua extracts kill Mtb through a combination of AN and additional compounds. A. afra, which produces very little AN, displayed bactericidal activity against Mtb that was substantial but weaker than that of A. annua. In addition, we measured the activity of Artemisia extracts against Mycobacterium abscessus. Interestingly, we observed that while A. annua is not bactericidal, it inhibits growth of M. abscessus, highlighting the potential of this plant in combinatory therapies to treat M. abscessus infections. CONCLUSION: Our results indicate that Artemisia extracts have an enormous potential for treatment of TB and M. abscessus infections, and that these plants contain bactericidal compounds in addition to AN. Combination of extracts with existing antibiotics may not only improve treatment outcomes but also reduce the emergence of resistance to other drugs.


Asunto(s)
Antituberculosos/farmacología , Artemisia , Mycobacterium tuberculosis/efectos de los fármacos , Extractos Vegetales/farmacología , Antituberculosos/aislamiento & purificación , Artemisia annua , Humanos , Pruebas de Sensibilidad Microbiana/métodos , Mycobacterium tuberculosis/fisiología , Extractos Vegetales/aislamiento & purificación
14.
J Bacteriol ; 202(9)2020 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-32094162

RESUMEN

Regulation of gene expression is critical for Mycobacterium tuberculosis to tolerate stressors encountered during infection and for nonpathogenic mycobacteria such as Mycobacterium smegmatis to survive environmental stressors. Unlike better-studied models, mycobacteria express ∼14% of their genes as leaderless transcripts. However, the impacts of leaderless transcript structures on mRNA half-life and translation efficiency in mycobacteria have not been directly tested. For leadered transcripts, the contributions of 5' untranslated regions (UTRs) to mRNA half-life and translation efficiency are similarly unknown. In M. tuberculosis and M. smegmatis, the essential sigma factor, SigA, is encoded by a transcript with a relatively short half-life. We hypothesized that the long 5' UTR of sigA causes this instability. To test this, we constructed fluorescence reporters and measured protein abundance, mRNA abundance, and mRNA half-life and calculated relative transcript production rates. The sigA 5' UTR conferred an increased transcript production rate, shorter mRNA half-life, and decreased apparent translation rate compared to a synthetic 5' UTR commonly used in mycobacterial expression plasmids. Leaderless transcripts appeared to be translated with similar efficiency as those with the sigA 5' UTR but had lower predicted transcript production rates. A global comparison of M. tuberculosis mRNA and protein abundances failed to reveal systematic differences in protein/mRNA ratios for leadered and leaderless transcripts, suggesting that variability in translation efficiency is largely driven by factors other than leader status. Our data are also discussed in light of an alternative model that leads to different conclusions and suggests leaderless transcripts may indeed be translated less efficiently.IMPORTANCE Tuberculosis, caused by Mycobacterium tuberculosis, is a major public health problem killing 1.5 million people globally each year. During infection, M. tuberculosis must alter its gene expression patterns to adapt to the stress conditions it encounters. Understanding how M. tuberculosis regulates gene expression may provide clues for ways to interfere with the bacterium's survival. Gene expression encompasses transcription, mRNA degradation, and translation. Here, we used Mycobacterium smegmatis as a model organism to study how 5' untranslated regions affect these three facets of gene expression in multiple ways. We furthermore provide insight into the expression of leaderless mRNAs, which lack 5' untranslated regions and are unusually prevalent in mycobacteria.


Asunto(s)
Regiones no Traducidas 5' , Proteínas Bacterianas/genética , Mycobacterium smegmatis/genética , Biosíntesis de Proteínas , Factor sigma/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Genes Reporteros , Humanos , Infecciones por Mycobacterium no Tuberculosas/microbiología , Mycobacterium smegmatis/química , Mycobacterium smegmatis/metabolismo , Regiones Promotoras Genéticas , Estabilidad del ARN , Factor sigma/química , Factor sigma/metabolismo , Transcripción Genética
15.
mBio ; 10(4)2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31266866

RESUMEN

The success of Mycobacterium tuberculosis as a human pathogen is due in part to its ability to survive stress conditions, such as hypoxia or nutrient deprivation, by entering nongrowing states. In these low-metabolism states, M. tuberculosis can tolerate antibiotics and develop genetically encoded antibiotic resistance, making its metabolic adaptation to stress crucial for survival. Numerous bacteria, including M. tuberculosis, have been shown to reduce their rates of mRNA degradation under growth limitation and stress. While the existence of this response appears to be conserved across species, the underlying bacterial mRNA stabilization mechanisms remain unknown. To better understand the biology of nongrowing mycobacteria, we sought to identify the mechanistic basis of mRNA stabilization in the nonpathogenic model Mycobacterium smegmatis We found that mRNA half-life was responsive to energy stress, with carbon starvation and hypoxia causing global mRNA stabilization. This global stabilization was rapidly reversed when hypoxia-adapted cultures were reexposed to oxygen, even in the absence of new transcription. The stringent response and RNase levels did not explain mRNA stabilization, nor did transcript abundance. This led us to hypothesize that metabolic changes during growth cessation impact the activities of degradation proteins, increasing mRNA stability. Indeed, bedaquiline and isoniazid, two drugs with opposing effects on cellular energy status, had opposite effects on mRNA half-lives in growth-arrested cells. Taken together, our results indicate that mRNA stability in mycobacteria is not directly regulated by growth status but rather is dependent on the status of energy metabolism.IMPORTANCE The logistics of tuberculosis therapy are difficult, requiring multiple drugs for many months. Mycobacterium tuberculosis survives in part by entering nongrowing states in which it is metabolically less active and thus less susceptible to antibiotics. Basic knowledge on how M. tuberculosis survives during these low-metabolism states is incomplete, and we hypothesize that optimized energy resource management is important. Here, we report that slowed mRNA turnover is a common feature of mycobacteria under energy stress but is not dependent on the mechanisms that have generally been postulated in the literature. Finally, we found that mRNA stability and growth status can be decoupled by a drug that causes growth arrest but increases metabolic activity, indicating that mRNA stability responds to metabolic status rather than to growth rate per se Our findings suggest a need to reorient studies of global mRNA stabilization to identify novel mechanisms that are presumably responsible.


Asunto(s)
Metabolismo Energético , Mycobacterium smegmatis/crecimiento & desarrollo , Mycobacterium smegmatis/metabolismo , Estabilidad del ARN , Carbono/metabolismo , Hipoxia , Estrés Fisiológico
16.
Front Microbiol ; 10: 591, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30984135

RESUMEN

The ability of Mycobacterium tuberculosis to infect, proliferate, and survive during long periods in the human lungs largely depends on the rigorous control of gene expression. Transcriptome-wide analyses are key to understanding gene regulation on a global scale. Here, we combine 5'-end-directed libraries with RNAseq expression libraries to gain insight into the transcriptome organization and post-transcriptional mRNA cleavage landscape in mycobacteria during log phase growth and under hypoxia, a physiologically relevant stress condition. Using the model organism Mycobacterium smegmatis, we identified 6,090 transcription start sites (TSSs) with high confidence during log phase growth, of which 67% were categorized as primary TSSs for annotated genes, and the remaining were classified as internal, antisense, or orphan, according to their genomic context. Interestingly, over 25% of the RNA transcripts lack a leader sequence, and of the coding sequences that do have leaders, 53% lack a strong consensus Shine-Dalgarno site. This indicates that like M. tuberculosis, M. smegmatis can initiate translation through multiple mechanisms. Our approach also allowed us to identify over 3,000 RNA cleavage sites, which occur at a novel sequence motif. To our knowledge, this represents the first report of a transcriptome-wide RNA cleavage site map in mycobacteria. The cleavage sites show a positional bias toward mRNA regulatory regions, highlighting the importance of post-transcriptional regulation in gene expression. We show that in low oxygen, a condition associated with the host environment during infection, mycobacteria change their transcriptomic profiles and endonucleolytic RNA cleavage is markedly reduced, suggesting a mechanistic explanation for previous reports of increased mRNA half-lives in response to stress. In addition, a number of TSSs were triggered in hypoxia, 56 of which contain the binding motif for the sigma factor SigF in their promoter regions. This suggests that SigF makes direct contributions to transcriptomic remodeling in hypoxia-challenged mycobacteria. Taken together, our data provide a foundation for further study of both transcriptional and posttranscriptional regulation in mycobacteria.

17.
J Immunol ; 200(9): 3244-3258, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29610140

RESUMEN

Upon recognition of a microbial pathogen, the innate and adaptive immune systems are linked to generate a cell-mediated immune response against the foreign invader. The culture filtrate of Mycobacterium tuberculosis contains ligands, such as M. tuberculosis tRNA, that activate the innate immune response and secreted Ags recognized by T cells to drive adaptive immune responses. In this study, bioinformatics analysis of gene-expression profiles derived from human PBMCs treated with distinct microbial ligands identified a mycobacterial tRNA-induced innate immune network resulting in the robust production of IL-12p70, a cytokine required to instruct an adaptive Th1 response for host defense against intracellular bacteria. As validated by functional studies, this pathway contained a feed-forward loop, whereby the early production of IL-18, type I IFNs, and IL-12p70 primed NK cells to respond to IL-18 and produce IFN-γ, enhancing further production of IL-12p70. Mechanistically, tRNA activates TLR3 and TLR8, and this synergistic induction of IL-12p70 was recapitulated by the addition of a specific TLR8 agonist with a TLR3 ligand to PBMCs. These data indicate that M. tuberculosis tRNA activates a gene network involving the integration of multiple innate signals, including types I and II IFNs, as well as distinct cell types to induce IL-12p70.


Asunto(s)
Interleucina-12/inmunología , Mycobacterium tuberculosis/inmunología , ARN Bacteriano/inmunología , ARN de Transferencia/inmunología , Tuberculosis/inmunología , Diferenciación Celular/inmunología , Redes Reguladoras de Genes/inmunología , Humanos , Inmunidad Celular/inmunología , Inmunidad Innata/inmunología , Interleucina-12/biosíntesis , Activación de Linfocitos/inmunología , Receptores de Reconocimiento de Patrones/inmunología , Células TH1/inmunología
18.
PLoS Genet ; 11(11): e1005641, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26536359

RESUMEN

RNA-seq technologies have provided significant insight into the transcription networks of mycobacteria. However, such studies provide no definitive information on the translational landscape. Here, we use a combination of high-throughput transcriptome and proteome-profiling approaches to more rigorously understand protein expression in two mycobacterial species. RNA-seq and ribosome profiling in Mycobacterium smegmatis, and transcription start site (TSS) mapping and N-terminal peptide mass spectrometry in Mycobacterium tuberculosis, provide complementary, empirical datasets to examine the congruence of transcription and translation in the Mycobacterium genus. We find that nearly one-quarter of mycobacterial transcripts are leaderless, lacking a 5' untranslated region (UTR) and Shine-Dalgarno ribosome-binding site. Our data indicate that leaderless translation is a major feature of mycobacterial genomes and is comparably robust to leadered initiation. Using translational reporters to systematically probe the cis-sequence requirements of leaderless translation initiation in mycobacteria, we find that an ATG or GTG at the mRNA 5' end is both necessary and sufficient. This criterion, together with our ribosome occupancy data, suggests that mycobacteria encode hundreds of small, unannotated proteins at the 5' ends of transcripts. The conservation of small proteins in both mycobacterial species tested suggests that some play important roles in mycobacterial physiology. Our translational-reporter system further indicates that mycobacterial leadered translation initiation requires a Shine Dalgarno site in the 5' UTR and that ATG, GTG, TTG, and ATT codons can robustly initiate translation. Our combined approaches provide the first comprehensive view of mycobacterial gene structures and their non-canonical mechanisms of protein expression.


Asunto(s)
Mycobacterium/genética , ARN Mensajero/genética , Genes Bacterianos , Mycobacterium/metabolismo , Ribosomas/metabolismo , Análisis de Secuencia de ARN
19.
Mol Microbiol ; 97(3): 408-22, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25899163

RESUMEN

The bacterial envelope integrates essential stress-sensing and adaptive functions; thus, envelope-preserving functions are important for survival. In Gram-negative bacteria, envelope integrity during stress is maintained by the multi-gene Psp response. Mycobacterium tuberculosis was thought to lack the Psp system since it encodes only pspA and no other psp ortholog. Intriguingly, pspA maps downstream from clgR, which encodes a transcription factor regulated by the MprAB-σ(E) envelope-stress-signaling system. clgR inactivation lowered ATP concentration during stress and protonophore treatment-induced clgR-pspA expression, suggesting that these genes express Psp-like functions. We identified a four-gene set - clgR, pspA (rv2744c), rv2743c, rv2742c - that is regulated by clgR and in turn regulates ClgR activity. Regulatory and protein-protein interactions within the set and a requirement of the four genes for functions associated with envelope integrity and surface-stress tolerance indicate that a Psp-like system has evolved in mycobacteria. Among Actinobacteria, the four-gene module occurred only in tuberculous mycobacteria and was required for intramacrophage growth, suggesting links between its function and mycobacterial virulence. Additionally, the four-gene module was required for MprAB-σ(E) stress-signaling activity. The positive feedback between envelope-stress-sensing and envelope-preserving functions allows sustained responses to multiple, envelope-perturbing signals during chronic infection, making the system uniquely suited to tuberculosis pathogenesis.


Asunto(s)
Pared Celular/metabolismo , Regulación Bacteriana de la Expresión Génica , Mycobacterium tuberculosis/fisiología , Estrés Fisiológico , Mycobacterium tuberculosis/genética , Operón
20.
Methods Mol Biol ; 1285: 31-45, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25779309

RESUMEN

Next-generation sequencing technologies facilitate the analysis of multiple important properties of the transcriptome in addition to gene expression levels. Here we describe a method for mapping RNA 5' ends in Mycobacterium tuberculosis, which allows the determination of transcriptional start sites (TSSs), comparative analysis of promoter usage under different conditions, and mapping of endoribonucleolytic processing sites. We describe in detail the procedures for constructing RNA sequencing libraries appropriate for RNA 5' end mapping using an Illumina sequencing platform. We also outline the major steps of data analysis.


Asunto(s)
Mycobacterium/genética , ARN Mensajero/genética , Análisis de Secuencia de ARN , Expresión Génica , Biblioteca de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA