Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(8): e0306422, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39150917

RESUMEN

BACKGROUND: Schizophrenia (SCZ) is characterized by cognitive deficits that are linked to prefrontal cortex dysfunction. While transcranial direct current stimulation (tDCS) shows promise for improving cognition, the effects of intensified 3mA tDCS protocols on brain physiology are unknown. This project aims to elucidate the neurophysiological and cognitive effects of an intensified prefrontal tDCS protocol in SCZ. METHODS: The study is designed as a randomized, double-blind, 2-arm parallel-group, sham-controlled, trial. Forty-eight participants with SCZ and cognitive impairment (measured via a set of executive functions tests) will be randomly allocated to receive either a single session of active (n = 24) or sham (n = 24) tDCS (20-min, 3-mA). The anodal and cathodal electrodes are positioned over the left and right DLPFC respectively. The stimulation occurs concurrently with the working memory task, which is initiated precisely 5 minutes after the onset of tDCS. Structural and resting-state (rs-fMRI) scans are conducted immediately before and after both active and sham tDCS using a 3 Tesla scanner (Siemens Prisma model) equipped with a 64-channel head coil. The primary outcome will be changes in brain activation (measures vis BOLD response) and working memory performance (accuracy, reaction time). DISCUSSION: The results of this study are helpful in optimizing tDCS protocols in SCZ and inform us of neurocognitive mechanisms underlying 3 mA stimulation. This study will additionally provide initial safety and efficacy data on a 3 mA tDCS protocol to support larger clinical trials. Positive results could lead to rapid and broader testing of a promising tool for debilitating symptoms that affect the majority of patients with SCZ. The results will be made available through publications in peer-reviewed journals and presentations at national and international conferences.


Asunto(s)
Cognición , Imagen por Resonancia Magnética , Corteza Prefrontal , Esquizofrenia , Estimulación Transcraneal de Corriente Directa , Humanos , Esquizofrenia/terapia , Esquizofrenia/fisiopatología , Estimulación Transcraneal de Corriente Directa/métodos , Corteza Prefrontal/fisiopatología , Corteza Prefrontal/diagnóstico por imagen , Método Doble Ciego , Adulto , Masculino , Femenino , Cognición/fisiología , Persona de Mediana Edad , Memoria a Corto Plazo/fisiología , Adulto Joven
2.
Transl Psychiatry ; 14(1): 78, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38316750

RESUMEN

Obsessive-compulsive disorder (OCD) is associated with a high disease burden, and treatment options are limited. We used intensified electrical stimulation in two dosages to target a main circuitry associated with the pathophysiology of OCD, left dorsolateral prefrontal cortex (l-DLPFC), and pre-supplementary motor area (pre-SMA) and assessed clinical outcomes, neuropsychological performance, and brain physiology. In a double-blind, randomized controlled trial, thirty-nine patients with OCD were randomly assigned to three groups of sham, 2-mA, or 1-mA transcranial direct current stimulation (tDCS) targeting the l-DLPFC (F3) and pre-SMA (FC2) with anodal and cathodal stimulation respectively. The treatment included 10 sessions of 20-minute stimulation delivered twice per day with 20-min between-session intervals. Outcome measures were reduction in OCD symptoms, anxiety, and depressive states, performance on a neuropsychological test battery (response inhibition, working memory, attention), oscillatory brain activities, and functional connectivity. All outcome measures except EEG were examined at pre-intervention, post-intervention, and 1-month follow-up times. The 2-mA protocol significantly reduced OCD symptoms, anxiety, and depression states and improved quality of life after the intervention up to 1-month follow-up compared to the sham group, while the 1-mA protocol reduced OCD symptoms only in the follow-up and depressive state immediately after and 1-month following the intervention. Both protocols partially improved response inhibition, and the 2-mA protocol reduced attention bias to OCD-related stimuli and improved reaction time in working memory performance. Both protocols increased alpha oscillatory power, and the 2-mA protocol decreased delta power as well. Both protocols increased connectivity in higher frequency bands at frontal-central areas compared to the sham. Modulation of the prefrontal-supplementary motor network with intensified tDCS ameliorates OCD clinical symptoms and results in beneficial cognitive effects. The 2-mA intensified stimulation resulted in larger symptom reduction and improved more converging outcome variables related to therapeutic efficacy. These results support applying the intensified prefrontal-SMA tDCS in larger trials.


Asunto(s)
Corteza Motora , Trastorno Obsesivo Compulsivo , Estimulación Transcraneal de Corriente Directa , Humanos , Estimulación Transcraneal de Corriente Directa/métodos , Resultado del Tratamiento , Calidad de Vida , Método Doble Ciego , Corteza Prefrontal
3.
Cereb Cortex ; 34(2)2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38244576

RESUMEN

Obtaining valuable objects motivates many of our daily decisions. However, the neural underpinnings of object processing based on human value memory are not yet fully understood. Here, we used whole-brain functional magnetic resonance imaging (fMRI) to examine activations due to value memory as participants passively viewed objects before, minutes after, and 1-70 days following value training. Significant value memory for objects was evident in the behavioral performance, which nevertheless faded over the days following training. Minutes after training, the occipital, ventral temporal, interparietal, and frontal areas showed strong value discrimination. Days after training, activation in the frontal, temporal, and occipital regions decreased, whereas the parietal areas showed sustained activation. In addition, days-long value responses emerged in certain subcortical regions, including the caudate, ventral striatum, and thalamus. Resting-state analysis revealed that these subcortical areas were functionally connected. Furthermore, the activation in the striatal cluster was positively correlated with participants' performance in days-long value memory. These findings shed light on the neural basis of value memory in humans with implications for object habit formation and cross-species comparisons.


Asunto(s)
Mapeo Encefálico , Lóbulo Occipital , Humanos , Cuerpo Estriado/diagnóstico por imagen , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA