Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(17)2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36077240

RESUMEN

Sialic acids and heparan sulfates make up the outermost part of the cell membrane and the extracellular matrix. Both structures are characterized by being negatively charged, serving as receptors for various pathogens, and are highly expressed in the respiratory and digestive tracts. Numerous viruses use heparan sulfates as receptors to infect cells; in this group are HSV, HPV, and SARS-CoV-2. Other viruses require the cell to express sialic acids, as is the case in influenza A viruses and adenoviruses. This review aims to present, in a general way, the participation of glycoconjugates in viral entry, and therapeutic strategies focused on inhibiting the interaction between the virus and the glycoconjugates. Interestingly, there are few studies that suggest the participation of both glycoconjugates in the viruses addressed here. Considering the biological redundancy that exists between heparan sulfates and sialic acids, we propose that it is important to jointly evaluate and design strategies that contemplate inhibiting the interactions of both glycoconjugates. This approach will allow identifying new receptors and lead to a deeper understanding of interspecies transmission.


Asunto(s)
COVID-19 , Virus , Glicoconjugados/metabolismo , Heparitina Sulfato/metabolismo , Humanos , Ácido N-Acetilneuramínico/metabolismo , Receptores Virales/metabolismo , SARS-CoV-2 , Ácidos Siálicos/metabolismo , Sulfatos , Acoplamiento Viral , Virus/metabolismo
2.
Vet Med Sci ; 8(2): 610-618, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35023299

RESUMEN

BACKGROUND: Porcine reproductive and respiratory syndrome virus (PRRSV) is an enveloped RNA virus in the order Nidovirales, family Arteriviridae, genus Betaarterivirus. Antibodies against nonstructural proteins (NSPs) from this virus can be found in pigs starting 4 days postinfection and they remain detectable for several months. OBJECTIVE: The goal of this study was to evaluate the immunogenicity and antigenic properties of recombinant proteins NSP1 and NSP11 expressed in Escherichia coli cells, as well as to assess the neutralization activity that they elicit. METHODS: We obtained the complete ORF-1 genes coding for NSP1 and NSP11 from PRRSV using the VR-2332 strain. Cloning was performed with the pET23a(+) vector with a histidine tag (His6), linearized by restriction enzyme digestion; the expression of the NSP1 and NSP11 clones was induced in OverExpress C41(DE3) chemically competent cells. Recombinant proteins were used to generate hyperimmune sera and we perform serological assays to confirm neutralizing antibodies. RESULTS: The expressed recombinant NSP1 and NSP11 were found to be immunogenic when injected in pigs, as well as demonstrated higher specificity in recognition of antigen in field sera from pigs positive infected with PRRSV. Furthermore, both NSP1 and NSP11 recombinant proteins elicited PRRSV neutralizing antibodies. CONCLUSIONS: In this study, we demonstrated the immune humoral response to NSP 1 and NSP11, and neutralizing-antibody response to PRRSV VR2332 strain in sera from hyperimmunized pigs.


Asunto(s)
Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Enfermedades de los Porcinos , Animales , Anticuerpos Neutralizantes , Formación de Anticuerpos , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Proteínas Recombinantes/genética , Porcinos , Proteínas no Estructurales Virales/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA