Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Ambio ; 53(3): 359-375, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37973704

RESUMEN

Applying specific circularity interventions to the food system may have environmental benefits. Using an iterative linear food system optimisation model (FOODSOM), we assess how changes in human diets, imports and exports, and the utilisation of waste streams impact land use and greenhouse gas emissions (GHG). After including these circularity principles, land use and GHG emissions were on average 40% and 68% lower than in the current food system, primarily driven by a reduction in production volumes and a shift towards feeding the domestic population. Shifting from the current diet to a circular diet decreased land use with 43% and GHG emissions with 52%. Allowing up to half of each nutrient in the human diet to be imported, while balancing imports with equal exports in terms of nitrogen, phosphorus and potassium, also decreased land use (up to 34%) and GHG emissions (up to 26%) compared to no imported food. Our findings show that circularity interventions should not be implemented mutually exclusively; by combining a circular diet with imported food and fully utilising waste streams, the lowest land use and GHG emissions can be realised.


Asunto(s)
Efecto Invernadero , Gases de Efecto Invernadero , Humanos , Ambiente , Dieta , Alimentos
2.
Nutrients ; 14(5)2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35267922

RESUMEN

For design of healthy and sustainable diets and food systems, it is important to consider not only the quantity but also the quality of nutrients. This is particularly important for proteins, given the large variability in amino acid composition and digestibility between dietary proteins. This article reviews measurements and metrics in relation to protein quality, but also their application. Protein quality methods based on concentrations and digestibility of individual amino acids are preferred, because they do not only allow ranking of proteins, but also assessment of complementarity of protein sources, although this should be considered only at a meal level and not a diet level. Measurements based on ileal digestibility are preferred over those on faecal digestibility to overcome the risk of overestimation of protein quality. Integration of protein quality on a dietary level should also be done based on measurements on an individual amino acid basis. Effects of processing, which is applied to all foods, should be considered as it can also affect protein quality through effects on digestibility and amino acid modification. Overall, protein quality data are crucial for integration into healthy and sustainable diets, but care is needed in data selection, interpretation and integration.


Asunto(s)
Benchmarking , Digestión , Aminoácidos/metabolismo , Proteínas en la Dieta/metabolismo , Íleon/metabolismo
3.
J Anim Sci ; 99(2)2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33626147

RESUMEN

Growing importance of upcycling agricultural by-products, food waste, and food processing by-products through livestock production strongly increased the variation in the nutritional quality of feed ingredients. Traditionally, feed ingredients are evaluated based on their measured extent of digestion. Awareness increases that in addition to the extent, the kinetics of digestion affects the metabolic fate of nutrients after absorption. Together with a growing body of evidence of complex interactions occurring within the lumen of the digestive tract, this urges the need of developing new approaches for feed evaluation. In a recently developed approach, we propose combining in vitro and in silico methods for feed ingredient evaluation. First steps in the development of such a systems were made by (1) evaluating in vitro the digestion potential of feed ingredients, regarding this as true ingredient properties and (2) predicting in silico the digestive processes like digesta transit, nutrient hydrolysis and absorption using dynamic, mechanistic modeling. This approach allows to evaluate to what extent the digestion potential of each ingredient is exploited in the digestive tract. Future efforts should focus on modeling digesta physicochemical properties and transit, applying in vitro digestion kinetic data of feed ingredients in mechanistic models, and generating reliable in vivo data on nutrient absorption kinetics across feed ingredients. The dynamic modeling approach is illustrated by a description of a modeling exercise that can be used for teaching purposes in digestive physiology or animal nutrition courses. A complete set of equations is provided as an on-line supplement, and can be built in modeling software that is freely available. Alternatively, the model can be constructed using any modeling software that enables the use of numerical integration methods.


Asunto(s)
Digestión , Eliminación de Residuos , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Alimentos , Cinética , Porcinos
4.
Br J Nutr ; 121(5): 529-537, 2019 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-30567611

RESUMEN

The passage rate of solids and liquids through the gastrointestinal tract differs. Increased dietary nutrient solubility causes nutrients to shift from the solid to the liquid digesta fraction and potentially affect digesta passage kinetics. We quantified: (1) the effect of three levels of dietary nutrient solubility (8, 19 and 31 % of soluble protein and sucrose in the diet) at high feed intake level (S) and (2) the effect of low v. high feed intake level (F), on digesta passage kinetics in forty male growing pigs. The mean retention time (MRT) of solids and liquids in the stomach and small intestine was assessed using TiO2 and Cr-EDTA, respectively. In addition, physicochemical properties of digesta were evaluated. Overall, solids were retained longer than liquids in the stomach (2·0 h, P<0·0001) and stomach+small intestine (1·6 h, P<0·001). When S increased, MRT in stomach decreased by 1·3 h for solids (P=0·01) and 0·7 h for liquids (P=0·002) but only at the highest level of S. When F increased using low-soluble nutrients, MRT in stomach increased by 0·8 h for solids (P=0·041) and 0·7 h for liquids (P=0·0001). Dietary treatments did not affect water-binding capacity and viscosity of digesta. In the stomach of growing pigs, dietary nutrient solubility affects digesta MRT in a non-linear manner, while feed intake level increases digesta MRT depending on dietary nutrient solubility. Results can be used to improve predictions on the kinetics of nutrient passage and thereby of nutrient digestion and absorption in the gastrointestinal tract.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA