Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Curr Protoc ; 4(5): e1043, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38706422

RESUMEN

Trypanosoma brucei (Tb) is the causative agent of human African trypanosomiasis (HAT), also known as sleeping sickness, which can be fatal if left untreated. An understanding of the parasite's cellular metabolism is vital for the discovery of new antitrypanosomal drugs and for disease eradication. Metabolomics can be used to analyze numerous metabolic pathways described as essential to Tb. brucei but has some limitations linked to the metabolites' physicochemical properties and the extraction process. To develop an optimized method for extracting and analyzing Tb. brucei metabolites, we tested the three most commonly used extraction methods, analyzed the extracts by hydrophilic interaction liquid chromatography high-resolution mass spectrometry (HILIC LC-HRMS), and further evaluated the results using quantitative criteria including the number, intensity, reproducibility, and variability of features, as well as qualitative criteria such as the specific coverage of relevant metabolites. Here, we present the resulting protocols for untargeted metabolomic analysis of Tb. brucei using (HILIC LC-HRMS). © 2024 Wiley Periodicals LLC. Basic Protocol 1: Culture of Trypanosoma brucei brucei parasites Basic Protocol 2: Preparation of samples for metabolomic analysis of Trypanosoma brucei brucei Basic Protocol 3: LC-HRMS-based metabolomic data analysis of Trypanosoma brucei brucei.


Asunto(s)
Metabolómica , Trypanosoma brucei brucei , Trypanosoma brucei brucei/metabolismo , Metabolómica/métodos , Cromatografía Liquida/métodos , Espectrometría de Masas/métodos , Tripanosomiasis Africana/parasitología
2.
Metabolomics ; 18(4): 20, 2022 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-35305174

RESUMEN

BACKGROUND: Trypanosoma brucei is the causative agent of Human African Trypanosomiasis (also known as sleeping sickness), a disease causing serious neurological disorders and fatal if left untreated. Due to its lethal pathogenicity, a variety of treatments have been developed over the years, but which have some important limitations such as acute toxicity and parasite resistance. Metabolomics is an innovative tool used to better understand the parasite's cellular metabolism, and identify new potential targets, modes of action and resistance mechanisms. The metabolomic approach is mainly associated with robust analytical techniques, such as NMR and Mass Spectrometry. Applying these tools to the trypanosome parasite is, thus, useful for providing new insights into the sleeping sickness pathology and guidance towards innovative treatments. AIM OF REVIEW: The present review aims to comprehensively describe the T. brucei biology and identify targets for new or commercialized antitrypanosomal drugs. Recent metabolomic applications to provide a deeper knowledge about the mechanisms of action of drugs or potential drugs against T. brucei are highlighted. Additionally, the advantages of metabolomics, alone or combined with other methods, are discussed. KEY SCIENTIFIC CONCEPTS OF REVIEW: Compared to other parasites, only few studies employing metabolomics have to date been reported on Trypanosoma brucei. Published metabolic studies, treatments and modes of action are discussed. The main interest is to evaluate the metabolomics contribution to the understanding of T. brucei's metabolism.


Asunto(s)
Trypanosoma brucei brucei , Tripanosomiasis Africana , Animales , Descubrimiento de Drogas/métodos , Humanos , Metabolómica , Trypanosoma brucei brucei/metabolismo , Tripanosomiasis Africana/tratamiento farmacológico , Tripanosomiasis Africana/parasitología
3.
Molecules ; 26(23)2021 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-34885738

RESUMEN

Pentacyclic triterpenes (PTs) are commonly found in medicinal plants with well-known antiparasitic effects. Previous research on C-3 and C-27 triterpenic esters showed effective and selective in vitro antiparasitic activities and in vivo effectiveness by parenteral routes. The aim of this study was to determine triterpenic esters' stability in different biological-like media and the main microsomal degradation products. An HPLC-PDA method was developed and validated to simultaneously analyze and quantify bioactive triterpenic esters in methanol (LOQ: 2.5 and 1.25-100 µg/mL) and plasma (LOQ: 5-125 µg/mL). Overall, both triterpenic esters showed a stable profile in aqueous and buffered solutions as well as in entire plasma, suggesting gaining access to the ester function is difficult for plasma enzymes. Conversely, after 1 h, 30% esters degradation in acidic media was observed with potential different hydrolysis mechanisms. C-3 (15 and 150 µM) and C-27 esters (150 µM) showed a relatively low hepatic microsomal metabolism (<23%) after 1 h, which was significantly higher in the lowest concentration of C-27 esters (15 µM) (>40% degradation). Metabolic HPLC-PDA-HRMS studies suggested hydrolysis, hydroxylation, dehydration, O-methylation, hydroxylation and/or the reduction of hydrolyzed derivatives, depending on the concentration and the position of the ester link. Further permeability and absorption studies are required to better define triterpenic esters pharmacokinetic and specific formulations designed to increase their oral bioavailability.


Asunto(s)
Antiparasitarios/química , Triterpenos Pentacíclicos/química , Extractos Vegetales/farmacología , Plantas Medicinales/química , Antiparasitarios/farmacología , Cromatografía Líquida de Alta Presión , Ésteres/química , Ésteres/farmacología , Hidrólisis/efectos de los fármacos , Triterpenos Pentacíclicos/aislamiento & purificación , Extractos Vegetales/química , Plantas Medicinales/parasitología
4.
ChemistryOpen ; 10(9): 896-903, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34499412

RESUMEN

Research for innovative drugs is crucial to contribute to parasitic infections control and eradication. Inspired by natural antiprotozoal triterpenes, a library of 12 hemisynthetic 3-O-arylalkyl esters was derived from ursolic and oleanolic acids through one-step synthesis. Compounds were tested on Trypanosoma, Leishmania and the WI38 cell line alongside with a set of triterpenic acids. Results showed that the triterpenic C3 esterification keeps the antitrypanosomal activity (IC50 ≈1.6-5.5 µm) while reducing the cytotoxicity compared to parent acids. Unsaturation of the ester alkyl chain leads to an activity loss interestingly kept when a sterically hindered group replaces the double bond or shields the ester group. An ursane/oleanane C3 hydroxylation was the only important feature for antileishmanial activity. Two candidates, dihydrocinnamoyl and 2-fluorophenylpropionyl ursolic acids, were tested on an acute mouse model of African trypanosomiasis with significant parasitemia reduction at day 5 post-infection for the dihydrocinnamoyl derivative. Further evaluation on other alkyl/protective groups should be investigated both in vitro and in vivo.


Asunto(s)
Ésteres/farmacología , Triterpenos/farmacología , Tripanocidas/farmacología , Animales , Diseño de Fármacos , Evaluación Preclínica de Medicamentos , Ésteres/síntesis química , Ésteres/toxicidad , Femenino , Leishmania mexicana/efectos de los fármacos , Ratones , Pruebas de Sensibilidad Parasitaria , Triterpenos/síntesis química , Triterpenos/toxicidad , Tripanocidas/síntesis química , Tripanocidas/toxicidad , Trypanosoma brucei brucei/efectos de los fármacos
5.
Planta Med ; 87(10-11): 860-867, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33285591

RESUMEN

Leaves of Vitellaria paradoxa, also called "Shea butter tree", are used in traditional medicine to treat various symptoms including malaria fever, dysentery, or skin infections. Composition of the dichloromethane extract of V. paradoxa leaves possessing antiparasitic activities was investigated. Five pentacyclic triterpenic acids together with 6 ester derivatives were isolated and identified by standards comparison, MS and 1H-NMR analysis. Corosolic, maslinic, and tormentic coumaroyl esters and their corresponding triterpenic acids were isolated from this plant for the first time. The antiparasitic activities of the 11 isolated compounds were evaluated in vitro on Plasmodium falciparum, Trypanosoma brucei brucei, and Leishmania mexicana mexicana and their selectivity determined by cytotoxicity evaluation on WI38 cells. None of the isolated compounds showed good antiplasmodial activity. The antitrypanosomal activity of individual compounds was in general higher than their antileishmanial one. One isolated triterpenic ester mixture in equilibrium, 3-O-p-E/Z-coumaroyltormentic acids, showed an attractive promising antitrypanosomal activity (IC50 = 0.7 µM) with low cytotoxicity (IC50= 44.5 µM) compared to the corresponding acid. Acute toxicity test on this ester did not show any toxicity at the maximal cumulative dose of 100 mg/kg intraperitoneally on mice. In vivo efficacy evaluation of this compound, at 50 mg/kg by intraperitoneal route on a T. b. brucei-infected mice model, showed a significant parasitemia reduction on day 4 post-infection together with 33.3% survival improvement. Further bioavailability and PK studies are needed along with mode of action investigations to further assess the potential of this molecule.


Asunto(s)
Antiprotozoarios , Ésteres , Animales , Antiprotozoarios/farmacología , Ratones , Extractos Vegetales/farmacología , Hojas de la Planta , Plasmodium falciparum
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA