Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(11)2023 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-37299848

RESUMEN

Human activity recognition (HAR) is an important research problem in computer vision. This problem is widely applied to building applications in human-machine interactions, monitoring, etc. Especially, HAR based on the human skeleton creates intuitive applications. Therefore, determining the current results of these studies is very important in selecting solutions and developing commercial products. In this paper, we perform a full survey on using deep learning to recognize human activity based on three-dimensional (3D) human skeleton data as input. Our research is based on four types of deep learning networks for activity recognition based on extracted feature vectors: Recurrent Neural Network (RNN) using extracted activity sequence features; Convolutional Neural Network (CNN) uses feature vectors extracted based on the projection of the skeleton into the image space; Graph Convolution Network (GCN) uses features extracted from the skeleton graph and the temporal-spatial function of the skeleton; Hybrid Deep Neural Network (Hybrid-DNN) uses many other types of features in combination. Our survey research is fully implemented from models, databases, metrics, and results from 2019 to March 2023, and they are presented in ascending order of time. In particular, we also carried out a comparative study on HAR based on a 3D human skeleton on the KLHA3D 102 and KLYOGA3D datasets. At the same time, we performed analysis and discussed the obtained results when applying CNN-based, GCN-based, and Hybrid-DNN-based deep learning networks.


Asunto(s)
Aprendizaje Profundo , Humanos , Redes Neurales de la Computación , Bases de Datos Factuales , Actividades Humanas , Esqueleto
2.
Sensors (Basel) ; 23(6)2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36991971

RESUMEN

Hand detection and classification is a very important pre-processing step in building applications based on three-dimensional (3D) hand pose estimation and hand activity recognition. To automatically limit the hand data area on egocentric vision (EV) datasets, especially to see the development and performance of the "You Only Live Once" (YOLO) network over the past seven years, we propose a study comparing the efficiency of hand detection and classification based on the YOLO-family networks. This study is based on the following problems: (1) systematizing all architectures, advantages, and disadvantages of YOLO-family networks from version (v)1 to v7; (2) preparing ground-truth data for pre-trained models and evaluation models of hand detection and classification on EV datasets (FPHAB, HOI4D, RehabHand); (3) fine-tuning the hand detection and classification model based on the YOLO-family networks, hand detection, and classification evaluation on the EV datasets. Hand detection and classification results on the YOLOv7 network and its variations were the best across all three datasets. The results of the YOLOv7-w6 network are as follows: FPHAB is P = 97% with TheshIOU = 0.5; HOI4D is P = 95% with TheshIOU = 0.5; RehabHand is larger than 95% with TheshIOU = 0.5; the processing speed of YOLOv7-w6 is 60 fps with a resolution of 1280 × 1280 pixels and that of YOLOv7 is 133 fps with a resolution of 640 × 640 pixels.


Asunto(s)
Mano , Redes Neurales de la Computación , Humanos
4.
Sensors (Basel) ; 22(14)2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35891099

RESUMEN

Three-dimensional human pose estimation is widely applied in sports, robotics, and healthcare. In the past five years, the number of CNN-based studies for 3D human pose estimation has been numerous and has yielded impressive results. However, studies often focus only on improving the accuracy of the estimation results. In this paper, we propose a fast, unified end-to-end model for estimating 3D human pose, called YOLOv5-HR-TCM (YOLOv5-HRet-Temporal Convolution Model). Our proposed model is based on the 2D to 3D lifting approach for 3D human pose estimation while taking care of each step in the estimation process, such as person detection, 2D human pose estimation, and 3D human pose estimation. The proposed model is a combination of best practices at each stage. Our proposed model is evaluated on the Human 3.6M dataset and compared with other methods at each step. The method achieves high accuracy, not sacrificing processing speed. The estimated time of the whole process is 3.146 FPS on a low-end computer. In particular, we propose a sports scoring application based on the deviation angle between the estimated 3D human posture and the standard (reference) origin. The average deviation angle evaluated on the Human 3.6M dataset (Protocol #1-Pro #1) is 8.2 degrees.


Asunto(s)
Postura , Robótica , Humanos
5.
Sensors (Basel) ; 21(24)2021 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-34960491

RESUMEN

Human segmentation and tracking often use the outcome of person detection in the video. Thus, the results of segmentation and tracking depend heavily on human detection results in the video. With the advent of Convolutional Neural Networks (CNNs), there are excellent results in this field. Segmentation and tracking of the person in the video have significant applications in monitoring and estimating human pose in 2D images and 3D space. In this paper, we performed a survey of many studies, methods, datasets, and results for human segmentation and tracking in video. We also touch upon detecting persons as it affects the results of human segmentation and human tracking. The survey is performed in great detail up to source code paths. The MADS (Martial Arts, Dancing and Sports) dataset comprises fast and complex activities. It has been published for the task of estimating human posture. However, before determining the human pose, the person needs to be detected as a segment in the video. Moreover, in the paper, we publish a mask dataset to evaluate the segmentation and tracking of people in the video. In our MASK MADS dataset, we have prepared 28 k mask images. We also evaluated the MADS dataset for segmenting and tracking people in the video with many recently published CNNs methods.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Redes Neurales de la Computación , Humanos
6.
Sensors (Basel) ; 21(12)2021 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-34201039

RESUMEN

Majority of current research focuses on a single static object reconstruction from a given pointcloud. However, the existing approaches are not applicable to real world applications such as dynamic and morphing scene reconstruction. To solve this, we propose a novel two-tiered deep neural network architecture, which is capable of reconstructing self-obstructed human-like morphing shapes from a depth frame in conjunction with cameras intrinsic parameters. The tests were performed using on custom dataset generated using a combination of AMASS and MoVi datasets. The proposed network achieved Jaccards' Index of 0.7907 for the first tier, which is used to extract region of interest from the point cloud. The second tier of the network has achieved Earth Mover's distance of 0.0256 and Chamfer distance of 0.276, indicating good experimental results. Further, subjective reconstruction results inspection shows strong predictive capabilities of the network, with the solution being able to reconstruct limb positions from very few object details.


Asunto(s)
Imagenología Tridimensional , Redes Neurales de la Computación , Extremidades , Humanos
7.
PeerJ Comput Sci ; 7: e611, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35036526

RESUMEN

The GF-3 satellite is China's first self-developed active imaging C-band multi-polarization synthetic aperture radar (SAR) satellite with complete intellectual property rights, which is widely used in various fields. Among them, the detection and recognition of banklines of GF-3 SAR image has very important application value for map matching, ship navigation, water environment monitoring and other fields. However, due to the coherent imaging mechanism, the GF-3 SAR image has obvious speckle, which affects the interpretation of the image seriously. Based on the excellent multi-scale, directionality and the optimal sparsity of the shearlet, a bankline detection algorithm based on shearlet is proposed. Firstly, we use non-local means filter to preprocess GF-3 SAR image, so as to reduce the interference of speckle on bankline detection. Secondly, shearlet is used to detect the bankline of the image. Finally, morphological processing is used to refine the bankline and further eliminate the false bankline caused by the speckle, so as to obtain the ideal bankline detection results. Experimental results show that the proposed method can effectively overcome the interference of speckle, and can detect the bankline information of GF-3 SAR image completely and smoothly.

8.
Sensors (Basel) ; 20(23)2020 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-33260347

RESUMEN

In recent years, hyperspectral images (HSIs) have attained considerable attention in computer vision (CV) due to their wide utility in remote sensing. Unlike images with three or lesser channels, HSIs have a large number of spectral bands. Recent works demonstrate the use of modern deep learning based CV techniques like convolutional neural networks (CNNs) for analyzing HSI. CNNs have receptive fields (RFs) fueled by learnable weights, which are trained to extract useful features from images. In this work, a novel multi-receptive CNN module called GhoMR is proposed for HSI classification. GhoMR utilizes blocks containing several RFs, extracting features in a residual fashion. Each RF extracts features which are used by other RFs to extract more complex features in a hierarchical manner. However, the higher the number of RFs, the greater the associated weights, thus heavier is the network. Most complex architectures suffer from this shortcoming. To tackle this, the recently found Ghost module is used as the basic building unit. Ghost modules address the feature redundancy in CNNs by extracting only limited features and performing cheap transformations on them, thus reducing the overall parameters in the network. To test the discriminative potential of GhoMR, a simple network called GhoMR-Net is constructed using GhoMR modules, and experiments are performed on three public HSI data sets-Indian Pines, University of Pavia, and Salinas Scene. The classification performance is measured using three metrics-overall accuracy (OA), Kappa coefficient (Kappa), and average accuracy (AA). Comparisons with ten state-of-the-art architectures are shown to demonstrate the effectiveness of the method further. Although lightweight, the proposed GhoMR-Net provides comparable or better performance than other networks. The PyTorch code for this study is made available at the iamarijit/GhoMR GitHub repository.

9.
Sensors (Basel) ; 20(23)2020 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-33261136

RESUMEN

Documents are stored in a digital form across several organizations. Printing this amount of data and placing it into folders instead of storing digitally is against the practical, economical, and ecological perspective. An efficient way of retrieving data from digitally stored documents is also required. This article presents a real-time supervised learning technique for document classification based on deep convolutional neural network (DCNN), which aims to reduce the impact of adverse document image issues such as signatures, marks, logo, and handwritten notes. The proposed technique's major steps include data augmentation, feature extraction using pre-trained neural network models, feature fusion, and feature selection. We propose a novel data augmentation technique, which normalizes the imbalanced dataset using the secondary dataset RVL-CDIP. The DCNN features are extracted using the VGG19 and AlexNet networks. The extracted features are fused, and the fused feature vector is optimized by applying a Pearson correlation coefficient-based technique to select the optimized features while removing the redundant features. The proposed technique is tested on the Tobacco3482 dataset, which gives a classification accuracy of 93.1% using a cubic support vector machine classifier, proving the validity of the proposed technique.

10.
Diagnostics (Basel) ; 10(8)2020 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-32781795

RESUMEN

Manual identification of brain tumors is an error-prone and tedious process for radiologists; therefore, it is crucial to adopt an automated system. The binary classification process, such as malignant or benign is relatively trivial; whereas, the multimodal brain tumors classification (T1, T2, T1CE, and Flair) is a challenging task for radiologists. Here, we present an automated multimodal classification method using deep learning for brain tumor type classification. The proposed method consists of five core steps. In the first step, the linear contrast stretching is employed using edge-based histogram equalization and discrete cosine transform (DCT). In the second step, deep learning feature extraction is performed. By utilizing transfer learning, two pre-trained convolutional neural network (CNN) models, namely VGG16 and VGG19, were used for feature extraction. In the third step, a correntropy-based joint learning approach was implemented along with the extreme learning machine (ELM) for the selection of best features. In the fourth step, the partial least square (PLS)-based robust covariant features were fused in one matrix. The combined matrix was fed to ELM for final classification. The proposed method was validated on the BraTS datasets and an accuracy of 97.8%, 96.9%, 92.5% for BraTs2015, BraTs2017, and BraTs2018, respectively, was achieved.

11.
Sensors (Basel) ; 19(16)2019 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-31426441

RESUMEN

We propose a method for generating the synthetic images of human embryo cells that could later be used for classification, analysis, and training, thus resulting in the creation of new synthetic image datasets for research areas lacking real-world data. Our focus was not only to generate the generic image of a cell such, but to make sure that it has all necessary attributes of a real cell image to provide a fully realistic synthetic version. We use human embryo images obtained during cell development processes for training a deep neural network (DNN). The proposed algorithm used generative adversarial network (GAN) to generate one-, two-, and four-cell stage images. We achieved a misclassification rate of 12.3% for the generated images, while the expert evaluation showed the true recognition rate (TRR) of 80.00% (for four-cell images), 86.8% (for two-cell images), and 96.2% (for one-cell images). Texture-based comparison using the Haralick features showed that there is no statistically (using the Student's t-test) significant (p < 0.01) differences between the real and synthetic embryo images except for the sum of variance (for one-cell and four-cell images), and variance and sum of average (for two-cell images) features. The obtained synthetic images can be later adapted to facilitate the development, training, and evaluation of new algorithms for embryo image processing tasks.

12.
Int J Neural Syst ; 20(5): 381-8, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20945517

RESUMEN

A method frequently used in classification systems for improving classification accuracy is to combine outputs of several classifiers. Among various types of classifiers, fuzzy ones are tempting because of using intelligible fuzzy if-then rules. In the paper we build an AdaBoost ensemble of relational neuro-fuzzy classifiers. Relational fuzzy systems bond input and output fuzzy linguistic values by a binary relation; thus, fuzzy rules have additional, comparing to traditional fuzzy systems, weights - elements of a fuzzy relation matrix. Thanks to this the system is better adjustable to data during learning. In the paper an ensemble of relational fuzzy systems is proposed. The problem is that such an ensemble contains separate rule bases which cannot be directly merged. As systems are separate, we cannot treat fuzzy rules coming from different systems as rules from the same (single) system. In the paper, the problem is addressed by a novel design of fuzzy systems constituting the ensemble, resulting in normalization of individual rule bases during learning. The method described in the paper is tested on several known benchmarks and compared with other machine learning solutions from the literature.


Asunto(s)
Inteligencia Artificial , Lógica Difusa , Redes Neurales de la Computación , Algoritmos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA