Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Cell Dev Biol ; 12: 1442198, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39296936

RESUMEN

A comprehensive study of soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) in the fly genome by RNAi in Drosophila photoreceptors indicated that knockdown of any of the COPI-SNAREs, Syx18, Sec20, and Use1, resulted in the same characteristic phenotypes: Golgi stacks gathering on their trans-side, laterally expanded Golgi cisternae, and a reduced number of discrete Golgi stacks. These Golgi stacks are reminiscent of mammalian Golgi ribbons and Brefeldin A (BFA)-bodies in Drosophila S2 cells. As previously reported, BFA suppresses trans-Golgi network (TGN) fission and Golgi stack separation to form a BFA-body, which is a cluster of Golgi stacks cored by recycling endosomes. We found that the impairing each of COPI-SNAREs results in clustered Golgi stacks similar to BFA-bodies, indicating that COPI-SNAREs have a role to separate clustered Golgi stacks. These results further support the idea that the movement of Golgi stacks and the balance of fusion and fission of the TGN determine the level of clustering and ribbon formation of Golgi stacks within cells.

2.
J Cell Sci ; 135(24)2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36444566

RESUMEN

Polarized transport is essential for constructing multiple plasma membrane domains in the cell. Drosophila photoreceptors are an excellent model system to study the mechanisms of polarized transport. Rab11 is the key factor regulating the post-Golgi transport of rhodopsin 1 (Rh1; also known as NinaE), a photoreceptive protein, to the rhabdomere, a photoreceptive plasma membrane. Here, we found that neuronal Synaptobrevin (nSyb) colocalizes with Rab11 on the trans-side of Golgi stacks and post-Golgi vesicles at the rhabdomere base, and nSyb deficiency impairs rhabdomeric transport and induces accumulation of Rh1 and vesicles in the cytoplasm; this is similar to the effects of Rab11 loss. These results indicate that nSyb acts as a post-Golgi SNARE toward rhabdomeres. Surprisingly, in Rab11-, Rip11- and nSyb-deficient photoreceptors, illumination enhances cytoplasmic accumulation of Rh1, which colocalizes with Rab11, Rabenosyn5, nSyb and Arrestin 1 (Arr1). Arr1 loss, but not Rab5 dominant negative (Rab5DN) protein expression, inhibits the light-enhanced cytoplasmic Rh1 accumulation. Rab5DN inhibits the generation of Rh1-containing multivesicular bodies rather than Rh1 internalization. Overall, these results indicate that exocytic Rh1 mingles with endocytosed Rh1 and is then transported together to rhabdomeres.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila/metabolismo , Rodopsina/metabolismo , Células Fotorreceptoras de Invertebrados/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas R-SNARE/metabolismo , Proteínas de Unión al GTP rab5/metabolismo , Drosophila melanogaster/metabolismo
3.
Mol Biol Cell ; 33(10): br17, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35767331

RESUMEN

Post-Golgi transport for specific membrane domains, also termed polarized transport, is essential for the construction and maintenance of polarized cells. Highly polarized Drosophila photoreceptors serve as a good model system for studying the mechanisms underlying polarized transport. The Mss4 Drosophila ortholog, Stratum (Strat), controls basal restriction of basement membrane proteins in follicle cells, and Rab8 acts downstream of Strat. We investigated the function of Strat in fly photoreceptors and found that polarized transport in both the basolateral and the rhabdomere membrane domains was inhibited in Strat-deficient photoreceptors. We also observed 79 and 55% reductions in Rab10 and Rab35 levels, respectively, but no reduction in Rab11 levels in whole-eye homozygous clones of Stratnull. Moreover, Rab35 was localized in the rhabdomere, and loss of Rab35 resulted in impaired Rh1 transport to the rhabdomere. These results indicate that Strat is essential for the stable expression of Rab10 and Rab35, which regulate basolateral and rhabdomere transport, respectively, in fly photoreceptors.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Animales , Drosophila/metabolismo , GTP Fosfohidrolasas/metabolismo , Aparato de Golgi/metabolismo , Transporte de Proteínas/fisiología
4.
J Cell Sci ; 133(24)2020 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-33262309

RESUMEN

Golgi stacks are the basic structural units of the Golgi. Golgi stacks are separated from each other and scattered in the cytoplasm of Drosophila cells. Here, we report that the ARF-GEF inhibitor Brefeldin A (BFA) induces the formation of BFA bodies, which are aggregates of Golgi stacks, trans-Golgi networks and recycling endosomes. Recycling endosomes are located in the centers of BFA bodies, while Golgi stacks surround them on their trans sides. Live imaging of S2 cells revealed that Golgi stacks repeatedly merged and separated on their trans sides, and BFA caused successive merger by inhibiting separation, forming BFA bodies. S2 cells carrying genome-edited BFA-resistant mutant Sec71M717L did not form BFA bodies at high concentrations of BFA; S2 cells carrying genome-edited BFA-hypersensitive mutant Sec71F713Y produced BFA bodies at low concentrations of BFA. These results indicate that Sec71 is the sole BFA target for BFA body formation and controls Golgi stack separation. Finally, we showed that impairment of Sec71 in fly photoreceptors induces BFA body formation, with accumulation of both apical and basolateral cargoes, resulting in inhibition of polarized transport.


Asunto(s)
Drosophila , Aparato de Golgi , Animales , Brefeldino A/farmacología , Endosomas , Red trans-Golgi
5.
Commun Integr Biol ; 13(1): 59-62, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32395196

RESUMEN

The trans-Golgi network (TGN) and recycling endosome (RE) have been recognized as sorting centers, the former for newly synthesized and the latter for endocytosed proteins. However, recent findings have revealed that TGN also receives endocytosed materials and RE accepts newly synthesized proteins destined to the plasma membrane. Recently, we reported that in both Drosophila and microtubule-disrupted HeLa cells, REs are associated with the trans-side of Golgi stacks. REs are highly dynamic: their separation from and association with Golgi stacks are often observed. Importantly, a newly synthesized cargo, glycosylphosphatidylinositol-anchored-GFP was found to be concentrated in Golgi-associated REs (GA-REs), while another cargo VSVG-GFP was excluded from GA-REs before post-Golgi trafficking to the plasma membrane. This suggested that the sorting of cargos takes place at the interface of Golgi stacks and GA-REs. In this study, we demonstrated that REs could associate with Golgi stacks in sea urchin embryos, further indicating that the association of REs with Golgi stacks is a well-conserved phenomenon in the animal kingdom.

6.
J Cell Sci ; 133(7)2020 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-32041903

RESUMEN

Cells in situ are often polarized and have multiple plasma membrane domains. To establish and maintain these domains, polarized transport is essential, and its impairment results in genetic disorders. Nevertheless, the underlying mechanisms of polarized transport have not been elucidated. Drosophila photoreceptor offers an excellent model for studying this. We found that Rab10 impairment significantly reduced basolateral levels of Na+K+ATPase, mislocalizing it to the stalk membrane, which is a domain of the apical plasma membrane. Furthermore, the shrunken basolateral and the expanded stalk membranes were accompanied with abnormalities in the Golgi cisternae of Rab10-impaired retinas. The deficiencies of Rab10-GEF Crag or the Rab10 effector Ehbp1 phenocopied Rab10 deficiency, indicating that Crag, Rab10 and Ehbp1 work together for polarized trafficking of membrane proteins to the basolateral membrane. These phenotypes were similar to those seen upon deficiency of AP1 or clathrin, which are known to be involved in the basolateral transport in other systems. Additionally, Crag, Rab10 and Ehbp1 colocalized with AP1 and clathrin on the trans-side of Golgi stacks. Taken together, these results indicate that AP1 and clathrin, and Crag, Rab10 and Ehbp1 collaborate in polarized basolateral transport, presumably in the budding process in the trans-Golgi network.


Asunto(s)
Adenosina Trifosfatasas , Drosophila , Animales , Membrana Celular/metabolismo , Drosophila/metabolismo , Aparato de Golgi/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/genética , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Red trans-Golgi/metabolismo
7.
J Cell Sci ; 133(4)2020 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-31974113

RESUMEN

Historically, the trans-Golgi network (TGN) has been recognized as a sorting center of newly synthesized proteins, whereas the recycling endosome (RE) is a compartment where endocytosed materials transit before being recycled to the plasma membrane. However, recent findings revealed that both the TGN and RE connect endocytosis and exocytosis and, thus, are functionally overlapping. Here we report, in both Drosophila and microtubule-disrupted HeLa cells, that REs are interconvertible between two distinct states, namely Golgi-associated REs and free REs. Detachment and reattachment of REs and Golgi stacks are often observed, and newly synthesized glycosylphosphatidylinositol-anchored cargo protein but not vesicular stomatitis virus G protein is transported through these two types of RE. In plants, there are two types of TGN - Golgi-associated TGN and Golgi-independent TGN. We show that dynamics of REs in both Drosophila and mammalian cells are very similar compared with those of plant TGNs. And, together with the similarity on the molecular level, our results indicate that fly and mammalian REs are organelles that are equivalent to TGNs in plants. This suggests that the identities and functional relationships between REs and TGNs should be reconsidered.


Asunto(s)
Drosophila , Aparato de Golgi , Animales , Endosomas/metabolismo , Aparato de Golgi/metabolismo , Células HeLa , Humanos , Transporte de Proteínas , Red trans-Golgi/metabolismo
8.
Mol Biol Cell ; 30(23): 2890-2900, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31553680

RESUMEN

Most membrane proteins are synthesized on and inserted into the membrane of the endoplasmic reticulum (ER), in eukaryote. The widely conserved ER membrane protein complex (EMC) facilitates the biogenesis of a wide range of membrane proteins. In this study, we investigated the EMC function using Drosophila photoreceptor as a model system. We found that the EMC was necessary only for the biogenesis of a subset of multipass membrane proteins such as rhodopsin (Rh1), TRP, TRPL, Csat, Cni, SERCA, and Na+K+ATPase α, but not for that of secretory or single-pass membrane proteins. Additionally, in EMC-deficient cells, Rh1 was translated to its C terminus but degraded independently from ER-associated degradation. Thus, EMC exerted its effect after translation but before or during the membrane integration of transmembrane domains (TMDs). Finally, we found that EMC was not required for the stable expression of the first three TMDs of Rh1 but was required for that of the fourth and fifth TMDs. Our results suggested that EMC is required for the ER membrane insertion of succeeding TMDs of multipass membrane proteins.


Asunto(s)
Proteínas de Drosophila/química , Drosophila melanogaster/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Células Fotorreceptoras de Invertebrados/metabolismo , Biosíntesis de Proteínas , Rodopsina/química , Animales , Degradación Asociada con el Retículo Endoplásmico , Proteínas de la Membrana/química , Modelos Biológicos , Dominios Proteicos , Estructura Secundaria de Proteína
9.
Development ; 146(16)2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31371377

RESUMEN

Drosophila photoreceptors develop from polarized epithelial cells that have apical and basolateral membranes. During morphogenesis, the apical membranes subdivide into a united bundle of photosensory microvilli (rhabdomeres) and a surrounding supporting membrane (stalk). By EMS-induced mutagenesis screening, we found that the F-Bin/Amphiphysin/Rvs (F-BAR) protein syndapin is essential for apical membrane segregation. The analysis of the super-resolution microscopy, STORM and the electron microscopy suggest that syndapin localizes to the neck of the microvilli at the base of the rhabdomere. Syndapin and moesin are required to constrict the neck of the microvilli to organize the membrane architecture at the base of the rhabdomere, to exclude the stalk membrane. Simultaneous loss of syndapin along with the microvilli adhesion molecule chaoptin significantly enhanced the disruption of stalk-rhabdomere segregation. However, loss of the factors involving endocytosis do not interfere. These results indicated syndapin is most likely functioning through its membrane curvature properties, and not through endocytic processes for stalk-rhabdomere segregation. Elucidation of the mechanism of this unconventional domain formation will provide novel insights into the field of cell biology.


Asunto(s)
Proteínas Portadoras/fisiología , Proteínas de Drosophila/fisiología , Drosophila/fisiología , Microvellosidades/fisiología , Células Fotorreceptoras de Invertebrados/fisiología , Animales , Proteínas Portadoras/genética , Drosophila/genética , Drosophila/ultraestructura , Proteínas de Drosophila/genética , Femenino , Masculino , Proteínas de la Membrana/fisiología , Microvellosidades/ultraestructura , Morfogénesis , Mutación , Células Fotorreceptoras de Invertebrados/citología , Células Fotorreceptoras de Invertebrados/ultraestructura
10.
J Cell Sci ; 132(15)2019 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-31296556

RESUMEN

Rab11 is essential for polarized post-Golgi vesicle trafficking to photosensitive membrane rhabdomeres in Drosophila photoreceptors. Here, we found that Parcas (Pcs), recently shown to have guanine nucleotide exchange (GEF) activity toward Rab11, co-localizes with Rab11 on the trans-side of Golgi units and post-Golgi vesicles at the base of the rhabdomeres in pupal photoreceptors. Pcs fused with the electron micrography tag APEX2 localizes on 150-300 nm vesicles at the trans-side of Golgi units, which are presumably fly recycling endosomes. Loss of Pcs impairs Rab11 localization on the trans-side of Golgi units and induces the cytoplasmic accumulation of post-Golgi vesicles bearing rhabdomere proteins, as observed in Rab11 deficiency. In contrast, loss of Rab11-specific subunits of the TRAPPII complex, another known Rab11-GEF, does not cause any defects in eye development nor the transport of rhabdomere proteins; however, simultaneous loss of TRAPPII and Pcs results in severe defects in eye development. These results indicate that both TRAPPII and Pcs are required for eye development, but Pcs functions as the predominant Rab11-GEF for post-Golgi transport to photosensitive membrane rhabdomeres.


Asunto(s)
Proteínas de Drosophila/metabolismo , Células Fotorreceptoras de Invertebrados/metabolismo , Rodopsinas Sensoriales/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster , Transporte de Proteínas , Rodopsinas Sensoriales/genética , Proteínas de Unión al GTP rab/genética
11.
Biol Open ; 5(10): 1420-1430, 2016 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-27591190

RESUMEN

SNAREs (SNAP receptors) are the key components of protein complexes that drive membrane fusion. Here, we report the function of a SNARE, Syntaxin 5 (Syx5), in the development of photoreceptors in Drosophila In wild-type photoreceptors, Syx5 localizes to cis-Golgi, along with cis-Golgi markers: Rab1 and GM130. We observed that Syx5-deficient photoreceptors show notable accumulation of these cis-Golgi markers accompanying drastic accumulation of vesicles between endoplasmic reticulum (ER) and Golgi cisternae. Extensive analysis of Rh1 (rhodopsin 1) trafficking revealed that in Syx5-deficient photoreceptors, Rh1 is exported from the ER with normal kinetics, retained in the cis-Golgi region along with GM130 for a prolonged period, and then subsequently degraded presumably by endoplasmic reticulum-associated protein degradation (ERAD) after retrieval to the ER. Unlike our previous report of Rab6-deficient photoreceptors - where two apical transport pathways are specifically inhibited - vesicle transport pathways to all plasma membrane domains are inhibited in Syx5-deficient photoreceptors, implying that Rab6 and Syx5 are acting in different steps of intra-Golgi transport. These results indicate that Syx5 is crucial for membrane protein transport, presumably during ER-derived vesicle fusion to form cis-Golgi cisternae.

12.
Fly (Austin) ; 10(3): 123-7, 2016 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-27116570

RESUMEN

Selective membrane transport pathways are essential for cells in situ to construct and maintain a polarized structure comprising multiple plasma membrane domains, which is essential for their specific cellular functions. Genetic screening in Drosophila photoreceptors harboring multiple plasma membrane domains enables the identification of genes involved in polarized transport pathways. Our genome-wide high-throughput screening identified a Rab6-null mutant with a rare phenotype characterized by a loss of 2 apical transport pathways with an intact basolateral transport. Although the functions of Rab6 in the Golgi apparatus are well known, its function in polarized transport is unexpected. The mutant phenotype and localization of Rab6 strongly indicate that Rab6 regulates transport between the trans-Golgi network (TGN) and recycling endosomes (REs): basolateral cargos are segregated at the TGN before Rab6 functions, but cargos going to multiple apical domains are sorted at REs. Both the medial-Golgi resident protein Metallophosphoesterase (MPPE) and the TGN marker GalT::CFP exhibit diffused co-localized distributions in Rab6-deficient cells, suggesting they are trapped in the retrograde transport vesicles returning to trans-Golgi cisternae. Hence, we propose that Rab6 regulates the fusion of retrograde transport vesicles containing medial, trans-Golgi resident proteins to the Golgi cisternae, which causes Golgi maturation to REs.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Células Fotorreceptoras de Invertebrados/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Animales , Drosophila/citología , Drosophila/genética , Drosophila/crecimiento & desarrollo , Proteínas de Drosophila/genética , Endosomas/metabolismo , Femenino , Aparato de Golgi/metabolismo , Masculino , Células Fotorreceptoras de Invertebrados/citología , Transporte de Proteínas , Proteínas de Unión al GTP rab/genética , Red trans-Golgi/metabolismo
13.
PLoS Genet ; 12(2): e1005828, 2016 02.
Artículo en Inglés | MEDLINE | ID: mdl-26890939

RESUMEN

Polarized membrane trafficking is essential for the construction and maintenance of multiple plasma membrane domains of cells. Highly polarized Drosophila photoreceptors are an excellent model for studying polarized transport. A single cross-section of Drosophila retina contains many photoreceptors with 3 clearly differentiated plasma membrane domains: a rhabdomere, stalk, and basolateral membrane. Genome-wide high-throughput ethyl methanesulfonate screening followed by precise immunohistochemical analysis identified a mutant with a rare phenotype characterized by a loss of 2 apical transport pathways with normal basolateral transport. Rapid gene identification using whole-genome resequencing and single nucleotide polymorphism mapping identified a nonsense mutation of Rab6 responsible for the apical-specific transport deficiency. Detailed analysis of the trafficking of a major rhabdomere protein Rh1 using blue light-induced chromophore supply identified Rab6 as essential for Rh1 to exit the Golgi units. Rab6 is mostly distributed from the trans-Golgi network to a Golgi-associated Rab11-positive compartment that likely recycles endosomes or transport vesicles going to recycling endosomes. Furthermore, the Rab6 effector, Rich, is required for Rab6 recruitment in the trans-Golgi network. Moreover, a Rich null mutation phenocopies the Rab6 null mutant, indicating that Rich functions as a guanine nucleotide exchange factor for Rab6. The results collectively indicate that Rab6 and Rich are essential for the trans-Golgi network-recycling endosome transport of cargoes destined for 2 apical domains. However, basolateral cargos are sorted and exported from the trans-Golgi network in a Rab6-independent manner.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Aparato de Golgi/metabolismo , Células Fotorreceptoras de Invertebrados/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Animales Modificados Genéticamente , Drosophila/efectos de los fármacos , Drosophila/genética , Proteínas de Drosophila/genética , Endosomas/metabolismo , Metanosulfonato de Etilo/farmacología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mutagénesis , Mutación , Transporte de Proteínas , Proteínas de Unión al GTP rab/genética
14.
Elife ; 42015 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-25715730

RESUMEN

In eukaryotes, most integral membrane proteins are synthesized, integrated into the membrane, and folded properly in the endoplasmic reticulum (ER). We screened the mutants affecting rhabdomeric expression of rhodopsin 1 (Rh1) in the Drosophila photoreceptors and found that dPob/EMC3, EMC1, and EMC8/9, Drosophila homologs of subunits of ER membrane protein complex (EMC), are essential for stabilization of immature Rh1 in an earlier step than that at which another Rh1-specific chaperone (NinaA) acts. dPob/EMC3 localizes to the ER and associates with EMC1 and calnexin. Moreover, EMC is required for the stable expression of other multi-pass transmembrane proteins such as minor rhodopsins Rh3 and Rh4, transient receptor potential, and Na(+)K(+)-ATPase, but not for a secreted protein or type I single-pass transmembrane proteins. Furthermore, we found that dPob/EMC3 deficiency induces rhabdomere degeneration in a light-independent manner. These results collectively indicate that EMC is a key factor in the biogenesis of multi-pass transmembrane proteins, including Rh1, and its loss causes retinal degeneration.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Proteínas de la Membrana/metabolismo , Células Fotorreceptoras de Invertebrados/metabolismo , Rodopsina/biosíntesis , Animales , Transporte de Proteínas
16.
Development ; 140(2): 385-94, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23250212

RESUMEN

Sorting of integral membrane proteins plays crucial roles in establishing and maintaining the polarized structures of epithelial cells and neurons. However, little is known about the sorting mechanisms of newly synthesized membrane proteins at the trans-Golgi network (TGN). To identify which genes are essential for these sorting mechanisms, we screened mutants in which the transport of Rhodopsin 1 (Rh1), an apical integral membrane protein in Drosophila photoreceptors, was affected. We found that deficiencies in glycosylphosphatidylinositol (GPI) synthesis and attachment processes cause loss of the apical transport of Rh1 from the TGN and mis-sorting to the endolysosomal system. Moreover, Na(+)K(+)-ATPase, a basolateral membrane protein, and Crumbs (Crb), a stalk membrane protein, were mistransported to the apical rhabdomeric microvilli in GPI-deficient photoreceptors. These results indicate that polarized sorting of integral membrane proteins at the TGN requires the synthesis and anchoring of GPI-anchored proteins. Little is known about the cellular biological consequences of GPI deficiency in animals in vivo. Our results provide new insights into the importance of GPI synthesis and aid the understanding of pathologies involving GPI deficiency.


Asunto(s)
Drosophila melanogaster/metabolismo , Regulación del Desarrollo de la Expresión Génica , Glicosilfosfatidilinositoles/metabolismo , Células Fotorreceptoras de Invertebrados/metabolismo , Rodopsina/metabolismo , Red trans-Golgi/metabolismo , Animales , Membrana Celular/metabolismo , Detergentes/farmacología , Proteínas de Drosophila/metabolismo , Colorantes Fluorescentes/metabolismo , Inmunohistoquímica/métodos , Cinética , Glicoproteínas de Membrana/metabolismo , Microdominios de Membrana/metabolismo , Mutación , Neuronas/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
17.
J Neurosci ; 32(27): 9205-16, 2012 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-22764229

RESUMEN

Upon illumination several phototransduction proteins translocate between cell body and photosensory compartments. In Drosophila photoreceptors arrestin (Arr2) translocates from cell body to the microvillar rhabdomere down a diffusion gradient created by binding of Arr2 to photo-isomerized metarhodopsin. Translocation is profoundly slowed in mutants of key phototransduction proteins including phospholipase C (PLC) and the Ca(2+)-permeable transient receptor potential channel (TRP), but how the phototransduction cascade accelerates Arr2 translocation is unknown. Using real-time fluorescent imaging of Arr2-green fluorescent protein translocation in dissociated ommatidia, we show that translocation is profoundly slowed in Ca(2+)-free solutions. Conversely, in a blind PLC mutant with ∼100-fold slower translocation, rapid translocation was rescued by the Ca(2+) ionophore, ionomycin. In mutants lacking NINAC (calmodulin [CaM] binding myosin III) in the cell body, translocation remained rapid even in Ca(2+)-free solutions. Immunolabeling revealed that Arr2 in the cell body colocalized with NINAC in the dark. In intact eyes, the impaired translocation found in trp mutants was rescued in ninaC;trp double mutants. Nevertheless, translocation following prolonged dark adaptation was significantly slower in ninaC mutants, than in wild type: a difference that was reflected in the slow decay of the electroretinogram. The results suggest that cytosolic NINAC is a Ca(2+)-dependent binding target for Arr2, which protects Arr2 from immobilization by a second potential sink that sequesters and releases arrestin on a much slower timescale. We propose that rapid Ca(2+)/CaM-dependent release of Arr2 from NINAC upon Ca(2+) influx accounts for the acceleration of translocation by phototransduction.


Asunto(s)
Arrestinas/metabolismo , Calcio/fisiología , Proteínas de Drosophila/deficiencia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Cadenas Pesadas de Miosina/deficiencia , Miosina Tipo III/fisiología , Células Fotorreceptoras de Invertebrados/metabolismo , Visión Ocular/fisiología , Animales , Animales Modificados Genéticamente , Arrestinas/genética , Señalización del Calcio/genética , Señalización del Calcio/fisiología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/fisiología , Proteínas de Drosophila/genética , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Proteínas del Ojo/genética , Femenino , Masculino , Cadenas Pesadas de Miosina/genética , Miosina Tipo III/genética , Células Fotorreceptoras de Invertebrados/citología , Transporte de Proteínas/fisiología
19.
Neuron ; 67(6): 997-1008, 2010 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-20869596

RESUMEN

Upon illumination, visual arrestin translocates from photoreceptor cell bodies to rhodopsin and membrane-rich photosensory compartments, vertebrate outer segments or invertebrate rhabdomeres, where it quenches activated rhodopsin. Both the mechanism and function of arrestin translocation are unresolved and controversial. In dark-adapted photoreceptors of the fruitfly Drosophila, confocal immunocytochemistry shows arrestin (Arr2) associated with distributed photoreceptor endomembranes. Immunocytochemistry and live imaging of GFP-tagged Arr2 demonstrate rapid reversible translocation to stimulated rhabdomeres in stoichiometric proportion to rhodopsin photoisomerization. Translocation is very rapid in normal photoreceptors (time constant <10 s) and can also be resolved in the time course of electroretinogram recordings. Genetic elimination of key phototransduction proteins, including phospholipase C (PLC), Gq, and the light-sensitive Ca2+-permeable TRP channels, slows translocation by 10- to 100-fold. Our results indicate that Arr2 translocation in Drosophila photoreceptors is driven by diffusion, but profoundly accelerated by phototransduction and Ca2+ influx.


Asunto(s)
Arrestinas/metabolismo , Proteínas de Drosophila/metabolismo , Fototransducción/fisiología , Células Fotorreceptoras de Invertebrados/fisiología , Rodopsina/metabolismo , Animales , Animales Modificados Genéticamente , Arrestinas/genética , Calcio/metabolismo , Adaptación a la Oscuridad/genética , Drosophila , Proteínas de Drosophila/genética , Electrorretinografía/métodos , Endocitosis/fisiología , Regulación de la Expresión Génica/efectos de la radiación , Proteínas Fluorescentes Verdes/genética , Isomerismo , Luz , Fototransducción/genética , Mutación/genética , Fosfolipasa C beta/genética , Transporte de Proteínas/fisiología , Análisis Espectral , Factores de Tiempo , Canales de Potencial de Receptor Transitorio/genética
20.
Neuron ; 59(5): 778-89, 2008 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-18786361

RESUMEN

Phototransduction in flies is the fastest known G protein-coupled signaling cascade, but how this performance is achieved remains unclear. Here, we investigate the mechanism and role of rhodopsin inactivation. We determined the lifetime of activated rhodopsin (metarhodopsin = M( *)) in whole-cell recordings from Drosophila photoreceptors by measuring the time window within which inactivating M( *) by photoreisomerization to rhodopsin could suppress responses to prior illumination. M( *) was inactivated rapidly (tau approximately 20 ms) under control conditions, but approximately 10-fold more slowly in Ca2+-free solutions. This pronounced Ca2+ dependence of M( *) inactivation was unaffected by mutations affecting phosphorylation of rhodopsin or arrestin but was abolished in mutants of calmodulin (CaM) or the CaM-binding myosin III, NINAC. This suggests a mechanism whereby Ca2+ influx acting via CaM and NINAC accelerates the binding of arrestin to M( *). Our results indicate that this strategy promotes quantum efficiency, temporal resolution, and fidelity of visual signaling.


Asunto(s)
Calcio/metabolismo , Calmodulina/metabolismo , Rodopsina/metabolismo , Visión Ocular/fisiología , Factores de Edad , Animales , Animales Modificados Genéticamente , Arrestina/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Proteínas del Ojo/metabolismo , Regulación de la Expresión Génica/genética , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Potenciales de la Membrana/efectos de la radiación , Mutación/fisiología , Cadenas Pesadas de Miosina/metabolismo , Técnicas de Placa-Clamp , Estimulación Luminosa/métodos , Células Fotorreceptoras de Invertebrados/efectos de los fármacos , Células Fotorreceptoras de Invertebrados/fisiología , Visión Ocular/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA