Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Small ; : e2405953, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39301996

RESUMEN

The interface between NiO and perovskite in inverted perovskite solar cells (PSCs) is a major factor that can limit device performance due to defects and inappropriate redox reactions, which cause nonradiative recombination and decrease in open-circuit voltage (VOC). In the present study, a novel approach is used for the first time, where an amino acid (glycine (Gly), alanine (Ala), and aminobutyric acid (ABA))-complexed NiO are used as interface modifiers to eliminate defect sites and hydroxyl groups from the surface of NiO. The Ala-complexed NiO suppresses interfacial non-radiative recombination, improves the perovskite layer quality and better energy band alignment with the perovskite, resulting in improved charge transfer and reduced recombination. The incorporation of the Ala-complexed NiO leads to a PCE of 20.27% with enhanced stability under the conditions of ambient air, light soaking, and heating to 85 °C, as it retains over 82%, 85%, and 61% of its initial PCE after 1000, 500, and 350 h, respectively. The low-temperature technique also leads to the fabrication of a NiO thin film that is suitable for flexible PSCs. The Ala-complexed NiO is fabricated on the flexible substrate and achieved 17.12% efficiency while retaining 71% of initial PCE after 5,000 bending.

2.
ACS Appl Mater Interfaces ; 15(24): 29597-29608, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37289997

RESUMEN

Perovskite solar cells (PSCs) emerged as potential photovoltaic energy-generating devices developing in recent years because of their excellent photovoltaic properties and ease of processing. However, PSCs are still reporting efficiencies much lower than their theoretical limits owing to various losses caused by the charge transport layer and the perovskite. In this regard, herein, an interface engineering strategy using functional molecules and chemical bridges was applied to reduce the loss of the heterojunction electron transport layer. As a functional interface layer, ethylenediaminetetraacetic acid (EDTA) was introduced between PCBM and the ZnO layer, and as a result, EDTA simultaneously formed chemical bonds with PCBM and ZnO to serve as a chemical bridge connecting the two. DFT and chemical analyses revealed that EDTA can act as a chemical bridge between PCBM and ZnO, passivate defect sites, and improve charge transfer. Optoelectrical analysis proved that EDTA chemical bridge-mediated charge transfer (CBM-CT) provides more efficient interfacial charge transport by reducing trap-assisted recombination losses at ETL interfaces, thereby improving device performance. The PSC with EDTA chemical bridge-mediated heterojunction ETL exhibited a high PCE of 21.21%, almost no hysteresis, and excellent stability to both air and light.

3.
Nanomaterials (Basel) ; 13(6)2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36985978

RESUMEN

Perovskite solar cells (PSCs) are advancing rapidly and have reached a performance comparable to that of silicon solar cells. Recently, they have been expanding into a variety of applications based on the excellent photoelectric properties of perovskite. Semi-transparent PSCs (ST-PSCs) are one promising application that utilizes the tunable transmittance of perovskite photoactive layers, which can be used in tandem solar cells (TSC) and building-integrated photovoltaics (BIPV). However, the inverse relationship between light transmittance and efficiency is a challenge in the development of ST-PSCs. To overcome these challenges, numerous studies are underway, including those on band-gap tuning, high-performance charge transport layers and electrodes, and creating island-shaped microstructures. This review provides a general and concise summary of the innovative approaches in ST-PSCs, including advances in the perovskite photoactive layer, transparent electrodes, device structures and their applications in TSC and BIPV. Furthermore, the essential requirements and challenges to be addressed to realize ST-PSCs are discussed, and the prospects of ST-PSCs are presented.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA