Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 10(1): 698, 2019 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-30741939

RESUMEN

Low dimensional quantum magnets are interesting because of the emerging collective behavior arising from strong quantum fluctuations. The one-dimensional (1D) S = 1/2 Heisenberg antiferromagnet is a paradigmatic example, whose low-energy excitations, known as spinons, carry fractional spin S = 1/2. These fractional modes can be reconfined by the application of a staggered magnetic field. Even though considerable progress has been made in the theoretical understanding of such magnets, experimental realizations of this low-dimensional physics are relatively rare. This is particularly true for rare-earth-based magnets because of the large effective spin anisotropy induced by the combination of strong spin-orbit coupling and crystal field splitting. Here, we demonstrate that the rare-earth perovskite YbAlO3 provides a realization of a quantum spin S = 1/2 chain material exhibiting both quantum critical Tomonaga-Luttinger liquid behavior and spinon confinement-deconfinement transitions in different regions of magnetic field-temperature phase diagram.

2.
Sci Rep ; 7(1): 12053, 2017 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-28935973

RESUMEN

Glassiness is ubiquitous and diverse in characteristics in nature. Understanding their differences and classification remains a major scientific challenge. Here, we show that scaling of magnetic memories with time can be used to classify magnetic glassy materials into two distinct classes. The systems studied are high temperature superconductor-related materials, spin-orbit Mott insulators, frustrated magnets, and dilute magnetic alloys. Our bulk magnetization measurements reveal that most densely populated magnets exhibit similar memory behavior characterized by a relaxation exponent of [Formula: see text]. This exponent is different from [Formula: see text] of dilute magnetic alloys that was ascribed to their hierarchical and fractal energy landscape, and is also different from [Formula: see text] of the conventional Debye relaxation expected for a spin solid, a state with long range order. Furthermore, our systematic study on dilute magnetic alloys with varying magnetic concentration exhibits crossovers among the two glassy states and spin solid.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA