Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Food Res Int ; 89(Pt 1): 296-301, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28460918

RESUMEN

Food-grade emulsions can be fabricated using simple and inexpensive low-energy homogenization methods. In this study, we examined the influence of surfactant type (Tween 40, 60, and 80), oil phase composition (limonene-to-medium chain triglyceride ratio), and temperature (25 to 95°C) on the formation and stability of flavor oil-in-water emulsions (10wt% oil, 15wt% surfactant, pH3) fabricated using spontaneous emulsification. Transparent emulsion-based delivery systems containing ultrafine droplets (d<40nm) could be formed at room temperature at certain limonene contents for all three surfactants. When these emulsions were heated and then cooled, appreciable droplet growth occurred at lower limonene levels (<60% limonene) leading to cloudiness, but ultrafine droplets were still present at higher limonene concentrations (80% limonene) leading to optical clarity. These results were attributed to the influence of oil phase composition and surfactant type on the phase inversion behavior of the surfactant-oil-water systems.

2.
Soft Matter ; 11(48): 9321-9, 2015 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-26431057

RESUMEN

Transparent emulsion-based delivery systems suitable for encapsulating lipophilic bioactive agents can be fabricated using low-energy spontaneous emulsification methods. These emulsions are typically fabricated from non-ionic surfactants whose hydrophilic head groups are susceptible to dehydration upon heating. This phenomenon may promote emulsion instability due to enhanced droplet coalescence at elevated temperatures. Conversely, the same phenomenon can be used to fabricate optically transparent emulsions through the phase inversion temperature (PIT) method. The purpose of the current study was to examine the influence of oil phase composition and surfactant-to-oil ratio on the thermal behavior of surfactant-oil-water systems containing limonene, medium chain triglycerides (MCT), and Tween 60. Various types of thermal behavior (turbidity versus temperature profiles) were exhibited by these systems depending on their initial composition. For certain compositions, thermoreversible emulsions could be formed that were opaque at high temperatures but transparent at ambient temperatures. These systems may be particularly suitable for the encapsulation of bioactive agents in applications where optical clarity is important.


Asunto(s)
Calor , Aceites/química , Transición de Fase , Polisorbatos/química , Tensoactivos/química , Triglicéridos/química , Emulsiones
3.
J Colloid Interface Sci ; 455: 172-8, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26070187

RESUMEN

Nanoemulsions can be formed spontaneously from surfactant-oil-water systems using low energy methods. In this work, we showed that the droplets in oil-in-water nanoemulsions fabricated by spontaneous emulsification could be coated with an anionic biopolymer (beet pectin) using electrostatic deposition. Nanoemulsions were formed by titrating oil (medium chain triglycerides) and surfactant (polyoxyethylene sorbitan monostearate+lauric arginate) mixtures into an aqueous solution (10 mM citrate buffer, pH 4). Lauric arginate was used to generate a positive charge on the droplet surfaces, thereby enabling subsequent electrostatic deposition of anionic pectin. Extensive droplet aggregation occurred when intermediate pectin concentrations were used due to bridging flocculation. However, stable anionic pectin-coated lipid droplets could be formed at high pectin concentrations. These results demonstrate the possibility of tailoring the functionality of lipid nanodroplets produced by spontaneous emulsification.


Asunto(s)
Biopolímeros/química , Nanoestructuras/química , Pectinas/química , Arginina/análogos & derivados , Arginina/química , Tampones (Química) , Ácido Cítrico/química , Emulsiones , Floculación , Concentración de Iones de Hidrógeno , Tamaño de la Partícula , Polisorbatos/química , Electricidad Estática , Tensoactivos/química , Triglicéridos/química
4.
Food Chem ; 185: 254-60, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-25952866

RESUMEN

The influence of temperature scanning and isothermal storage conditions on turbidity, particle size, and thermal reversibility of vitamin E-enriched emulsions produced by spontaneous emulsification was examined. Initially, the mini-emulsions formed were optically transparent and contained small droplets (d ≈ 44 nm). When heated (20-90 °C), emulsions exhibited a complex turbidity-temperature profile with a phase inversion temperature (PIT) at ≈ 75-80 °C. Temperature scanning rate had a major influence on emulsion thermal reversibility. Slow heating (0.5 °C/min) above the PIT followed by quench cooling (≈ 67 °C min(-1)) to 30 °C did not appreciably increase turbidity or droplet diameter (d ≈ 50 nm), suggesting these systems were thermo-reversible. However, slow heating to temperatures below the PIT followed by rapid cooling appreciably increased droplet size and turbidity (thermo-irreversible). Cooling rate also affected emulsion thermo-reversibility: the turbidity and droplet size after heating above the PIT decreased with increasing cooling rate.


Asunto(s)
Sistemas de Liberación de Medicamentos , Emulsiones , Vitamina E/química , Estabilidad de Medicamentos , Tamaño de la Partícula , Temperatura
5.
Soft Matter ; 11(11): 2228-36, 2015 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-25646949

RESUMEN

Delivery systems based on filled hydrogel particles (microgels) can be fabricated from natural food-grade lipids and biopolymers. The potential for controlling release characteristics by modulating the electrostatic interactions between emulsifier-coated lipid droplets and the biopolymer matrix within hydrogel particles was investigated. A multistage procedure was used to fabricate calcium alginate beads filled with lipid droplets stabilized by non-ionic, cationic, anionic, or zwitterionic emulsifiers. Oil-in-water emulsions stabilized by Tween 60, DTAB, SDS, or whey protein were prepared by microfluidization, mixed with various alginate solutions, and then microgels were formed by simple extrusion into calcium solutions. The microgels were placed into a series of buffer solutions with different pH values (2 to 11). Lipid droplets remained encapsulated under acidic and neutral conditions, but were released under highly basic conditions (pH 11) due to hydrogel swelling when the alginate concentration was sufficiently high. Lipid droplet release increased with decreasing alginate concentration, which could be attributed to an increase in the pore size of the hydrogel matrix. These results have important implications for the design of delivery systems to entrap and control the release of lipophilic bioactive components within filled hydrogel particles.


Asunto(s)
Alginatos/química , Emulsionantes/química , Emulsiones/química , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Microesferas , Aceites/química , Agua/química , Ácido Glucurónico/química , Ácidos Hexurónicos/química , Concentración de Iones de Hidrógeno , Cinética , Gotas Lipídicas/química , Nefelometría y Turbidimetría , Tamaño de la Partícula , Electricidad Estática , Propiedades de Superficie
6.
Food Chem ; 171: 117-22, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25308650

RESUMEN

Oil-in-water nanoemulsions are particularly suitable for encapsulation of lipophilic nutraceuticals because of their ability to form stable and transparent delivery systems with high oral bioavailability. In this study, the influence of system composition and preparation conditions on the particle size and stability of vitamin D nanoemulsions prepared by spontaneous emulsification (SE) was investigated. SE relies on the formation of small oil droplets when an oil/surfactant mixture is titrated into an aqueous solution. The influence of oil phase composition (vitamin D and MCT), surfactant-to-oil ratio (SOR), surfactant type (Tween 20, 40, 60, 80 and 85), and stirring conditions on the initial particle size of vitamin D nanoemulsions was studied. Nanoemulsions with small droplet diameters (d<200 nm) could be formed using Tween 80 at SOR⩾1 at high stirring speeds (800 rpm). These systems were relatively stable to droplet growth at ambient temperatures (<10% in diameter after 1 month storage), but unstable to heating (T>80°C). The thermal stability of the nanoemulsions could be improved by adding a cosurfactant (sodium dodecyl sulphate (SDS)). The spontaneous emulsification method is simple and inexpensive to carry out and therefore has great potential for forming nanoemulsion-based delivery systems for food, personal care, and pharmaceutical applications.


Asunto(s)
Emulsiones/química , Nanopartículas/química , Vitamina D/administración & dosificación , Suplementos Dietéticos , Sistemas de Liberación de Medicamentos , Tamaño de la Partícula , Polisorbatos/química , Dodecil Sulfato de Sodio/química , Tensoactivos/química , Temperatura
7.
J Agric Food Chem ; 62(46): 11246-53, 2014 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-25343750

RESUMEN

Emulsion-based delivery systems are being utilized to incorporate lipophilic bioactive components into various food, personal care, and pharmaceutical products. This study examined the influence of inorganic salts (NaCl and CaCl2) on the formation, stability, and properties of vitamin E-enriched emulsions prepared by spontaneous emulsification. These emulsions were simply formed by titration of a mixture of vitamin E acetate (VE), carrier oil (MCT), and nonionic surfactant (Tween 80) into an aqueous salt solution with continuous stirring. Salt type and concentration (0-1 N NaCl or 0-0.5 N CaCl2) did not have a significant influence on the initial droplet size of the emulsions. On the other hand, the isothermal and thermal stabilities of the emulsions depended strongly on salt levels. The cloud point of the emulsions decreased with increasing salt concentration, which was attributed to accelerated droplet coalescence in the presence of salts. Dilution (2-6 times) of the emulsions with water appreciably improved their thermal stability by increasing their cloud point, which was mainly attributed to the decrease in aqueous phase salt levels. The isothermal storage stability of the emulsions also depended on salt concentration; however, increasing the salt concentration decreased the rate of droplet growth, which was the opposite of its effect on thermal stability. Potential physicochemical mechanisms for these effects are discussed in terms of the influence of salt ions on van der Waals and electrostatic interactions. This study provides important information about the effect of inorganic salts on the formation and stability of vitamin E emulsions suitable for use in food, personal care, and pharmaceutical products.


Asunto(s)
Tensoactivos/análisis , Vitamina E/química , Citrato de Calcio/análisis , Sistemas de Liberación de Medicamentos , Estabilidad de Medicamentos , Emulsiones/química , Polisorbatos/análisis , Cloruro de Sodio/análisis
8.
J Agric Food Chem ; 62(7): 1720-5, 2014 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-24475908

RESUMEN

Nanoemulsion-based delivery systems are finding increasing utilization to encapsulate lipophilic bioactive components in food, personal care, cosmetic, and pharmaceutical applications. In this study, a spontaneous emulsification method was used to fabricate nanoemulsions from polyunsaturated (ω-3) oils, that is, fish oil. This low-energy method relies on formation of fine oil droplets when an oil/surfactant mixture is added to an aqueous solution. The influence of surfactant-to-oil ratio (SOR), oil composition (lemon oil and MCT), and cosolvent composition (glycerol, ethanol, propylene glycol, and water) on the formation and stability of the systems was determined. Optically transparent nanoemulsions could be formed by controlling SOR, oil composition, and aqueous phase composition. The spontaneous emulsification method therefore has considerable potential for fabricating nanoemulsion-based delivery systems for incorporating polyunsatured oils into clear food, personal care, and pharmaceutical products.


Asunto(s)
Química Farmacéutica/métodos , Sistemas de Liberación de Medicamentos , Emulsiones/química , Ácidos Grasos Omega-3/química , Aceites de Pescado/química , Tensoactivos/química
9.
J Agric Food Chem ; 62(7): 1625-33, 2014 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-24460007

RESUMEN

Oil-in-water nanoemulsions are being used in the food, beverage, and pharmaceutical industries to encapsulate, protect, and deliver lipophilic bioactive components, such as drugs, vitamins, and nutraceuticals. However, nanoemulsions are thermodynamically unstable systems that breakdown over time. We investigated the influence of posthomogenization cosurfactant addition on the thermal and storage stability of vitamin E acetate nanoemulsions (VE-nanoemulsions) formed from 10% oil phase (VE), 10% surfactant (Tween 80), 20% cosolvent (ethanol), and 60% buffer solution (pH 3). Addition of a nonionic cosurfactant (0.5% Tween 20) caused little change in droplet charge, whereas addition of anionic (0.5% SDS) or cationic (0.5% lauric arginate) cosurfactants caused droplets to be more negative or positive, respectively. Tween 20 addition had little impact on the cloud point of VE-nanoemulsions, but slightly decreased their isothermal storage stability at elevated temperatures (37 °C). Lauric arginate or SDS addition appreciably increased the cloud point, but did not improve storage stability. Indeed, SDS actually decreased the storage stability of the VE-nanoemulsions at elevated temperatures. We discuss these effects in terms of the influence of surfactants on droplet growth through Ostwald ripening and/or coalescence mechanisms. This study provides important information about the effect of cosurfactants on the stability of VE-nanoemulsions suitable for use in pharmaceutical and food products.


Asunto(s)
Tensoactivos/química , Vitamina E/química , Estabilidad de Medicamentos , Almacenaje de Medicamentos , Emulsiones/química , Nanoestructuras/química , Tamaño de la Partícula , Polisorbatos/química
10.
J Colloid Interface Sci ; 411: 105-13, 2013 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-24050638

RESUMEN

Oil-in-water nanoemulsions are finding increasing use as delivery systems to encapsulate lipophilic bioactive components in functional food, personal care, and pharmaceutical products. We investigated the influence of a water-soluble cosolvent (glycerol) on the formation, stability, and properties of vitamin E acetate-loaded nanoemulsions (VE-NEs) prepared by spontaneous emulsification. VE-NEs were formed by titration of a mixture of vitamin E acetate, carrier oil (MCT) and non-ionic surfactant (Tween 80) into an aqueous glycerol solution with continuous mixing. Cosolvent concentration had an appreciable effect on the particle size produced, with the smallest mean droplet diameters (d<50 nm) being formed at 40 and 50 wt% glycerol. Nanoemulsions (d<100 nm) containing 10% vitamin E acetate could be produced at relatively low surfactant concentrations (5%) using these high glycerol levels. The turbidity of the NEs decreased at high glycerol concentrations due to the reduction in droplet size and refractive index contrast. The long-term stability of the VE-NEs was strongly influenced by glycerol concentration and storage temperature. VE-NEs containing 40% glycerol were relatively stable to droplet growth when stored at 5 and 20°C, but a rapid increase in droplet size and turbidity occurred during storage at 37°C. Temperature scanning experiments (20-80-20°C) indicated that a steep and irreversible increase in turbidity occurred during heating, which was around 70°C in the absence of glycerol and 60°C in the presence of 40% glycerol. Droplet instability was attributed to an increase in the rate of Ostwald ripening and/or coalescence as the temperature was increased, associated with dehydration of the non-ionic surfactant head-group leading to a reduction in phase inversion temperature. Dilution (100×) of VE-NEs containing glycerol with water considerably improved their stability to droplet growth, especially at high storage temperatures. This study provides important information about the effect of glycerol on the formation, stability and physical properties of VE-enriched NEs suitable for food, personal care, and pharmaceutical products.


Asunto(s)
Emulsiones , Glicerol/química , Nanotecnología , Vitamina E/química , Nefelometría y Turbidimetría , Tamaño de la Partícula
11.
J Colloid Interface Sci ; 391: 95-102, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23116862

RESUMEN

Oil-in-water nanoemulsions are finding increasing use as delivery systems to encapsulate lipophilic bioactive components in functional food, personal care, and pharmaceutical products. We have investigated the influence of system composition and preparation conditions on the particle size of vitamin E acetate (VE)-loaded nanoemulsions prepared by spontaneous emulsification. This method relies on the formation of very fine oil droplets when an oil/surfactant mixture is added to water. The oil-to-emulsion ratio content was kept constant (10 wt.%) while the surfactant-to-emulsion ratio (%SER) was varied (from 2.5 to 10 wt.%). Oil phase composition (vitamin E to medium chain triglyceride ratio) had a major effect on particle size, with the smallest droplets being formed at 8 wt.% VE and 2 wt.% MCT. Surfactant type also had an appreciable impact on particle size, with TWEEN® 80 giving the smallest droplets from a group of food-grade non-ionic surfactants (TWEEN® 20, 40, 60, 80, and 85). Surfactant-to-emulsion ratio also had to be optimized to produce fine droplets, with the smallest droplets being formed at SER=10 wt.%. Particle size could also be reduced by increasing the temperature and stirring speed used when the oil/surfactant mixture was added to water. By optimizing system composition and homogenization conditions we were able to form VE-loaded nanoemulsions with small mean droplet diameters (d<50 nm) and low polydispersity indexes (PDI<0.13). The spontaneous emulsification method therefore has great potential for forming nanoemulsion-based delivery systems for food, personal care, and pharmaceutical applications.


Asunto(s)
Emulsiones/síntesis química , Vitamina E/química , Nanotecnología , Aceites/química , Tamaño de la Partícula , Polisorbatos/farmacología , Tensoactivos/química , Tensoactivos/farmacología , Triglicéridos/química , Agua/química
12.
Food Chem ; 127(3): 1031-8, 2011 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-25214093

RESUMEN

Palm-based diacylglycerol (P-DAG) oils were produced through enzymatic glycerolysis of palm kernel oil (PKO), palm oil (PO), palm olein (POL), palm mid fraction (PMF) and palm stearin (PS). High purity DAG (83-90%, w/w) was obtained and compared to palm-based oils (P-oil) had significantly (P<0.05) different fatty acid composition (FAC), iodine value (IV) and slip melting point (SMP). Solid fat content (SFC) profiles of P-DAG oils as compared to P-oils had less steep curves with lower SFC at low temperature range (5-10°C) and the higher complete melting temperatures. Also, P-DAG oils in contrast with P-oils showed endothermic as well as exothermic peaks with higher transition temperatures and significantly (P<0.05) higher crystallisation onsets, heats of fusion, and heats of crystallisation. Crystal forms for P-DAG oils were mostly in the ß form.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA