Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Forensic Sci ; 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39294554

RESUMEN

Age estimation plays a crucial role in various fields, including forensic science and anthropology. This study aims to develop and validate DentAge, a deep-learning model for automated age prediction using panoramic dental X-ray images. DentAge was trained on a dataset comprising 21,007 panoramic dental X-ray images sourced from a private dental center in Slovenia. The dataset included subjects aged 4 to 97 years with various dental conditions. Transfer learning was employed, initializing the model with ImageNet weights and fine-tuning on the dental image dataset. The model was trained using stochastic gradient descent with momentum, and mean absolute error (MAE) served as the objective function. Across the test dataset, DentAge achieved an MAE of 3.12 years, demonstrating its efficacy in age prediction. Notably, the model performed well across different age groups, with MAEs ranging from 1.94 (age group [10-20]) to 13.40 years (age group [90-100]). Visual evaluation revealed factors contributing to prediction errors, including prosthetic restorations, tooth loss, and bone resorption. DentAge represents a significant advancement in automated age prediction within dentistry. The model's robust performance across diverse age groups and dental conditions underscores its potential utility in real-world scenarios. Our model will be accessible to the public for further adjustments and validation, ensuring DentAge's effectiveness and trustworthiness in practical scenarios.

3.
Sci Rep ; 14(1): 16080, 2024 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-38992041

RESUMEN

Intracranial aneurysms (IAs) are a common vascular pathology and are associated with a risk of rupture, which is often fatal. Aneurysm growth of more than 1 mm is considered a surrogate of rupture risk, therefore, this study presents a comprehensive analysis of intracranial aneurysm measurements utilizing a dataset comprising 358 IA from 248 computed tomography angiography (CTA) scans measured by four junior raters and one senior rater. The study explores the variability in sizing assessments by employing both human raters and an Artificial Intelligence (AI) system. Our findings reveal substantial inter- and intra-rater variability among junior raters, contrasting with the lower intra-rater variability observed in the senior rater. Standard deviations of all raters were above the threshold for IA growth (1 mm). Additionally, the study identifies a systemic bias, indicating a tendency for human experts to measure aneurysms smaller than the AI system. Our findings emphasize the challenges in human assessment while also showcasing the capacity of AI technology to improve the precision and reliability of intracranial aneurysm assessments, especially beneficial for junior raters. The potential of AI was particularly evident in the task of monitoring IA at various intervals, where the AI-based approach surpassed junior raters and achieved performance comparable to senior raters.


Asunto(s)
Inteligencia Artificial , Angiografía por Tomografía Computarizada , Aneurisma Intracraneal , Humanos , Aneurisma Intracraneal/diagnóstico por imagen , Aneurisma Intracraneal/patología , Masculino , Femenino , Angiografía por Tomografía Computarizada/métodos , Persona de Mediana Edad , Anciano , Reproducibilidad de los Resultados , Variaciones Dependientes del Observador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA