Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plant Sci ; 348: 112233, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39173886

RESUMEN

Tocochromanols, collectively known as Vitamin E, serve as natural lipid-soluble antioxidants that are exclusively obtained through dietary intake in humans. Synthesized by all plants, tocochromanols play an important role in protecting polyunsaturated fatty acids in plant seeds from lipid peroxidation. While the genes involved in tocochromanol biosynthesis have been fully elucidated in Arabidopsis thaliana, Oryza sativa and Zea mays, the genetic basis of tocochromanol accumulation in sweet corn remains poorly understood. This gap is a consequence of limited natural genetic diversity and harvest at immature growth stages. In this study, we conducted comprehensive genome-wide association studies (GWAS) on a sweet corn panel of 295 individuals with a high-density molecular marker set. In total, thirteen quantitative trait loci (QTLs) for individual and derived tocochromanol traits were identified. Our analysis identified novel roles for three genes, ZmCS2, Zmshki1 and ZmB4FMV1, in the regulation of α-tocopherol accumulation in sweet corn kernels. We genetically validated the role of Zmshki1 through the generation of a knock-out line using CRISPR-Cas9 technology. Further gene-based GWAS revealed the function of the canonical tyrosine metabolic enzymes ZmCS2 and Zmhppd1 in the regulation of total tocochromanol content. This comprehensive assessment of the genetic basis for variation in vitamin E content establishes a solid foundation for enhancing vitamin E content not only in sweet corn, but also in other cereal crops.


Asunto(s)
Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo , Vitamina E , Zea mays , Zea mays/genética , Zea mays/metabolismo , Zea mays/crecimiento & desarrollo , Vitamina E/metabolismo , Sitios de Carácter Cuantitativo/genética , Fitomejoramiento , Semillas/genética , Semillas/metabolismo , Semillas/crecimiento & desarrollo
2.
Food Chem X ; 18: 100743, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37397213

RESUMEN

This study analyzed the effects of thermal processing on volatiles and fatty acids in sweet corn. There were 27 volatiles measured in fresh samples, and 33, 21, and 19 volatiles identified in the steaming, blanching, and roasting groups, respectively. Relative odor activity values (ROAVs) showed that characteristic aroma-active volatiles of sweet corn after thermal treatments included: (E)-2-nonenal, 1-octen-3-ol, beta-myrcene, dimethyl trisulfide, 1-(4,5-dihydro-2-thiazolyl)-ethanone, and d-limonene. Thermal treatments significantly increased the unsaturated fatty acids (oleic acid and linolenic acid) of sweet corn by 110 to 183% compared to fresh samples. Meanwhile, many characteristic volatiles were found that derived from the oxidative cleavage of fatty acids. The sweet corn aroma obtained by steaming for 5 min was considered the closest to fresh corn. Our research provided insight into aroma composition of different thermally processed sweet corn and laid the foundation for further exploring the sources of aroma compounds in thermally processed sweet corn.

3.
Food Chem (Oxf) ; 6: 100161, 2023 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-36691663

RESUMEN

In the present study, l-tryptophan was applied in combination with blue light to modulate carotenoid biosynthesis in maize sprouts. The profiles of carotenoids, chlorophylls, and relative genes in carotenoid biosynthesis and light signaling pathways were studied. l-tryptophan and blue light both promoted the accumulation of carotenoids, and their combination further increased carotenoid content by 120%. l-tryptophan exerted auxin-like effects and stimulated PSY expression in blue light exposure maize sprouts, resulting in increased α- and ß- carotenes. l-tryptophan could also play a photoprotective role through the xanthophyll cycle under blue light. In addition, CRY in the light signaling pathway was critical for carotenoid biosynthesis. These findings provide new insights into the regulation of carotenoid biosynthesis and l-tryptophan could be used in conjunction with blue light to fortify carotenoids in maize sprouts.

4.
Mol Breed ; 42(9): 53, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37309374

RESUMEN

Southern rust, one of the most destructive foliar diseases of sweet corn (Zea mays convar. saccharata var. rugosa), is caused by Puccinia polysora Underw. and leads to enormous yield losses and reduced quality of sweet corn in China. Utilization of resistance genes is an effective and environmentally friendly strategy for improving southern rust resistance of sweet corn. However, improvement is hampered by a lack of resistance genes in Chinese sweet corn germplasm. In this study, we introgress the southern rust resistance gene RppQ from Qi319, an inbred line of southern rust-resistant field corn, into four elite sweet corn inbred lines (1401, 1413, 1434, and 1445) using marker-assisted backcross breeding. These are parental inbred lines of four popular sweet corn varieties: Yuetian 28, Yuetian 13, Yuetian 26, and Yuetian 27. We developed five RppQ-based markers (M0607, M0801, M0903, M3301, and M3402) and employed these markers for foreground selection; 92.3 to 97.9% of the recurrent parent genomes were recovered following three or four rounds of backcrossing. The four newly developed sweet corn lines all showed significant improvement of southern rust resistance compared with their respective parent lines. Meanwhile, there was no significant difference in phenotypic data for agronomic traits. In addition, reconstituted hybrids derived from the converted lines retained resistance to southern rust, while other agronomic traits and sugar content remained unchanged. Our study provides an example of successful development of southern rust-resistant sweet corn using a resistance gene from field corn. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-022-01315-7.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA