Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
iScience ; 27(7): 110352, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39055917

RESUMEN

The orexinergic system of the lateral hypothalamus plays crucial roles in arousal, feeding behavior, and reward modulation. Most research has focused on adult rodents, overlooking orexins' potential role in the nervous system development. This study, using electrophysiological and molecular tools, highlights importance of orexinergic signaling in the postnatal development of the rodent dorsolateral geniculate nucleus (DLG), a primary visual thalamic center. Orexin activation of DLG thalamocortical neurons occurs in a brief seven-day window around eye-opening, concurrent to transient OX2 receptor expression. Blocking OX2 receptors during this period reduces sensitivity of DLG neurons to green and blue light and lowers spontaneous firing rates in adulthood. This research reveals critical and temporally confined role of orexin signaling in postnatal brain development, emphasizing its contribution to experience-dependent refinement in the DLG and its long-term impact on visual function.

2.
Eur J Neurosci ; 60(2): 3921-3945, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38924215

RESUMEN

In mammals, intrinsic 24 h or circadian rhythms are primarily generated by the suprachiasmatic nuclei (SCN). Rhythmic daily changes in the transcriptome and proteome of SCN cells are controlled by interlocking transcription-translation feedback loops (TTFLs) of core clock genes and their proteins. SCN cells function as autonomous circadian oscillators, which synchronize through intercellular neuropeptide signalling. Physiological and behavioural rhythms can be severely disrupted by genetic modification of a diverse range of genes and proteins in the SCN. With the advent of next generation sequencing, there is unprecedented information on the molecular profile of the SCN and how it is affected by genetically targeted alteration. However, whether the expression of some genes is more readily affected by genetic alteration of the SCN is unclear. Here, using publicly available datasets from recent RNA-seq assessments of the SCN from genetically altered and control mice, we evaluated whether there are commonalities in transcriptome dysregulation. This was completed for four different phases across the 24 h cycle and was augmented by Gene Ontology Molecular Function (GO:MF) and promoter analysis. Common differentially expressed genes (DEGs) and/or enriched GO:MF terms included signalling molecules, their receptors, and core clock components. Finally, examination of the JASPAR database indicated that E-box and CRE elements in the promoter regions of several commonly dysregulated genes. From this analysis, we identify differential expression of genes coding for molecules involved in SCN intra- and intercellular signalling as a potential cause of abnormal circadian rhythms.


Asunto(s)
Ritmo Circadiano , Neuropéptidos , Transducción de Señal , Núcleo Supraquiasmático , Animales , Núcleo Supraquiasmático/metabolismo , Ratones , Neuropéptidos/metabolismo , Neuropéptidos/genética , Ritmo Circadiano/fisiología , Transcriptoma
3.
J Sleep Res ; : e14205, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38650540

RESUMEN

Sleep is fundamental to health. The aim of this study was to analyse and determine factors predicting sleep quality during and after national lockdowns due to severe acute respiratory syndrome coronavirus 2 (COVID-19) in the UK. A longitudinal online survey-based study (SleepQuest) involving UK adults was administered in Spring 2020, Winter 2020, and Winter 2022 including questionnaires probing sleep quality, depression, anxiety, beliefs about sleep, demographics, COVID-19 status, and exercise. The primary outcome was sleep quality (Pittsburgh Sleep Quality Index). A linear mixed-effects model evaluated factors associated with baseline and longitudinal sleep quality. Complete data were provided by 3306 participants in Spring 2020, 2196 participants in Winter 2020, and 1193 in Winter 2022. Participants were mostly female (73.8%), white (97.4%), and aged over 50 years (81.0%). On average, participants reported poor sleep quality in Spring 2020 (mean [SD] Pittsburgh Sleep Quality Index score = 6.59 [3.6]) and Winter 2020 (mean [SD] Pittsburgh Sleep Quality Index score = 6.44 [3.6]), with improved but still poor sleep quality in Winter 2022 (mean [SD] Pittsburgh Sleep Quality Index score = 6.17 [3.5]). Improved sleep quality was driven by better subjective sleep and reduced daytime dysfunction and sleep latency. Being female, older, having caring responsibilities, working nightshifts, and reporting higher levels of depression, anxiety, and unhelpful beliefs about sleep were associated with worse baseline PSQI scores. Better sleep quality was associated with more days exercising per week at baseline. Interventions focusing on improving mental health, exercise, and attitudes towards sleep, particularly in at-risk groups, may improve sleep-related outcomes in future pandemics.

4.
Sci Rep ; 13(1): 5480, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-37016055

RESUMEN

Analysis of ex vivo Per2 bioluminescent rhythm previously recorded in the mouse dorsal vagal complex reveals a characteristic phase relationship between three distinct circadian oscillators. These signals represent core clock gene expression in the area postrema (AP), the nucleus of the solitary tract (NTS) and the ependymal cells surrounding the 4th ventricle (4Vep). Initially, the data suggests a consistent phasing in which the AP peaks first, followed shortly by the NTS, with the 4Vep peaking 8-9 h later. Wavelet analysis reveals that this pattern is not consistently maintained throughout a recording, however, the phase dynamics strongly imply that oscillator interactions are present. A simple phase model of the three oscillators is developed and it suggests that realistic phase dynamics occur between three model oscillators with coupling close to a synchronisation transition. The coupling topology suggests that the AP bidirectionally communicates phase information to the NTS and the 4Vep to synchronise the three structures. A comparison of the model with previous experimental manipulations demonstrates its feasibility to explain DVC circadian phasing. Finally, we show that simulating steadily decaying coupling improves the model's ability to capture experimental phase dynamics.


Asunto(s)
Ritmo Circadiano , Núcleo Solitario , Ratones , Animales , Ritmo Circadiano/genética , Neuroglía , Núcleo Supraquiasmático
5.
iScience ; 26(2): 106002, 2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36866044

RESUMEN

Timed daily access to a running-wheel (scheduled voluntary exercise; SVE) synchronizes rodent circadian rhythms and promotes stable, 24h rhythms in animals with genetically targeted impairment of neuropeptide signaling (Vipr2 -/- mice). Here we used RNA-seq and/or qRT-PCR to assess how this neuropeptide signaling impairment as well as SVE shapes molecular programs in the brain clock (suprachiasmatic nuclei; SCN) and peripheral tissues (liver and lung). Compared to Vipr2 +/+ animals, the SCN transcriptome of Vipr2 -/- mice showed extensive dysregulation which included core clock components, transcription factors, and neurochemicals. Furthermore, although SVE stabilized behavioral rhythms in these animals, the SCN transcriptome remained dysregulated. The molecular programs in the lung and liver of Vipr2 -/- mice were partially intact, although their response to SVE differed to that of these peripheral tissues in the Vipr2 +/+ mice. These findings highlight that SVE can correct behavioral abnormalities in circadian rhythms without causing large scale alterations to the SCN transcriptome.

6.
J Physiol ; 601(5): 979-1016, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36661095

RESUMEN

The intergeniculate leaflet and ventral lateral geniculate nucleus (IGL/VLG) are subcortical structures involved in entrainment of the brain's circadian system to photic and non-photic (e.g. metabolic and arousal) cues. Both receive information about environmental light from photoreceptors, exhibit infra-slow oscillations (ISO) in vivo, and connect to the master circadian clock. Although current evidence demonstrates that the IGL/VLG communicate metabolic information and are crucial for entrainment of circadian rhythms to time-restricted feeding, their sensitivity to food intake-related peptides has not been investigated yet. We examined the effect of metabolically relevant peptides on the spontaneous activity of IGL/VLG neurons. Using ex vivo and in vivo electrophysiological recordings as well as in situ hybridisation, we tested potential sensitivity of the IGL/VLG to anorexigenic and orexigenic peptides, such as cholecystokinin, glucagon-like peptide 1, oxyntomodulin, peptide YY, orexin A and ghrelin. We explored neuronal responses to these drugs during day and night, and in standard vs. high-fat diet conditions. We found that IGL/VLG neurons responded to all the substances tested, except peptide YY. Moreover, more neurons responded to anorexigenic drugs at night, while a high-fat diet affected the IGL/VLG sensitivity to orexigenic peptides. Interestingly, ISO neurons responded to light and orexin A, but did not respond to the other food intake-related peptides. In contrast, non-ISO cells were activated by metabolic peptides, with only some being responsive to light. Our results show for the first time that peptides involved in the body's energy homeostasis stimulate the thalamus and suggest functional separation of the IGL/VLG cells. KEY POINTS: The intergeniculate leaflet and ventral lateral geniculate nucleus (IGL/VLG) of the rodent thalamus process various signals and participate in circadian entrainment. In both structures, cells exhibiting infra-slow oscillatory activity as well as non-rhythmically firing neurons being observed. Here, we reveal that only one of these two groups of cells responds to anorexigenic (cholecystokinin, glucagon-like peptide 1 and oxyntomodulin) and orexigenic (ghrelin and orexin A) peptides. Neuronal responses vary depending on the time of day (day vs. night) and on the diet (standard vs. high-fat diet). Additionally, we visualised receptors to the tested peptides in the IGL/VLG using in situ hybridisation. Our results suggest that two electrophysiologically different subpopulations of IGL/VLG neurons are involved in two separate functions: one related to the body's energy homeostasis and one associated with the subcortical visual system.


Asunto(s)
Cuerpos Geniculados , Ghrelina , Colecistoquinina/metabolismo , Ritmo Circadiano/fisiología , Señales (Psicología) , Dieta Alta en Grasa , Cuerpos Geniculados/fisiología , Ghrelina/metabolismo , Orexinas/metabolismo , Oxintomodulina/metabolismo , Péptido YY/metabolismo , Núcleo Supraquiasmático/metabolismo
7.
Front Physiol ; 13: 931167, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36117684

RESUMEN

The dorsal vagal complex (DVC) is a key hub for integrating blood-borne, central, and vagal ascending signals that convey important information on metabolic and homeostatic state. Research implicates the DVC in the termination of food intake and the transition to satiety, and consequently it is considered a brainstem satiety centre. In natural and laboratory settings, animals have distinct times of the day or circadian phases at which they prefer to eat, but if and how circadian signals affect DVC activity is not well understood. Here, we evaluate how intrinsic circadian signals regulate molecular and cellular activity in the area postrema (AP), nucleus of the solitary tract (NTS), and dorsal motor nucleus of the vagus (DMV) of the DVC. The hierarchy and potential interactions among these oscillators and their response to changes in diet are considered a simple framework in which to model these oscillators and their interactions is suggested. We propose possible functions of the DVC in the circadian control of feeding behaviour and speculate on future research directions including the translational value of knowledge of intrinsic circadian timekeeping the brainstem.

8.
J Med Chem ; 65(16): 11229-11240, 2022 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-35930058

RESUMEN

Melatonin is a neurohormone released in a circadian manner with peak levels at night. Melatonin mediates its effects mainly through G protein-coupled MT1 and MT2 receptors. Drugs acting on melatonin receptors are indicated for circadian rhythm- and sleep-related disorders. Tools to study the activation of these receptors with high temporal resolution are lacking. Here, we synthesized a family of light-activatable caged compounds by attaching o-nitrobenzyl (o-NB) or coumarin photocleavable groups to melatonin indolic nitrogen. All caged compounds showed the expected decrease in binding affinity for MT1 and MT2. The o-NB derivative MCS-0382 showed the best uncaging and biological properties, with 250-fold increase in affinity and potency upon illumination. Generation of melatonin from MCS-0382 was further demonstrated by its ability to modulate the excitation of SCN neurons in rat brain slices. MCS-0382 is available to study melatonin effects in a temporally controlled manner in cellular and physiological settings.


Asunto(s)
Melatonina , Receptor de Melatonina MT1 , Animales , Ritmo Circadiano , Ligandos , Melatonina/metabolismo , Melatonina/farmacología , Ratas , Receptor de Melatonina MT1/química , Receptor de Melatonina MT2/metabolismo , Receptores de Melatonina
9.
J Physiol ; 600(4): 733-749, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34053067

RESUMEN

KEY POINTS: Recently, we found that the dorsal vagal complex displays autonomous circadian timekeeping properties  The dorsal motor nucleus of the vagus (DMV) is an executory part of this complex - a source of parasympathetic innervation of the gastrointestinal tract  Here, we reveal daily changes in the neuronal activities of the rat DMV, including firing rate, intrinsic excitability and synaptic input - all of these peaking in the late day  Additionally, we establish that short term high-fat diet disrupts these daily rhythms, boosting the variability in the firing rate, but blunting the DMV responsiveness to ingestive cues  These results help us better understand daily control over parasympathetic outflow and provide evidence on its dependence on the high-fat diet ABSTRACT: The suprachiasmatic nuclei (SCN) of the hypothalamus function as the brain's primary circadian clock, but circadian clock genes are also rhythmically expressed in several extra-SCN brain sites where they can exert local temporal control over physiology and behaviour. Recently, we found that the hindbrain dorsal vagal complex possesses strong daily timekeeping capabilities, with the area postrema and nucleus of the solitary tract exhibiting the most robust clock properties. The possibility that the executory part of this complex - the dorsal motor nucleus of the vagus (DMV) - also exhibits daily changes has not been extensively studied. The DMV is the source of vagal efferent motoneurons that regulate gastric motility and emptying and consequently influence meal size and energy homeostasis. We used a combination of multi-channel electrophysiology and patch clamp recordings to gain insight into effects of time of day and diet on these DMV cells. We found that DMV neurons increase their spontaneous activity, excitability and responsiveness to metabolic neuromodulators at late day and this was paralleled with an enhanced synaptic input to these neurons. A high-fat diet typically damps circadian rhythms, but we found that consumption of a high-fat diet paradoxically amplified daily variation of DMV neuronal activity, while blunting the neurons responsiveness to metabolic neuromodulators. In summary, we show for the first time that DMV neural activity changes with time of day, with this temporal variation modulated by diet. These findings have clear implications for our understanding of the daily control of vagal efferents and parasympathetic outflow.


Asunto(s)
Tronco Encefálico , Dieta Alta en Grasa , Animales , Tronco Encefálico/fisiología , Neuronas Motoras/fisiología , Ratas , Ratas Sprague-Dawley , Nervio Vago/fisiología
10.
J Physiol ; 600(4): 751-767, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34490628

RESUMEN

Temporal partitioning of daily food intake is crucial for survival and involves the integration of internal circadian states and external influences such as the light-dark cycle and dietary composition. These intrinsic and extrinsic factors are interdependent with misalignment of circadian rhythms promoting body weight gain, while consumption of a calorie-dense diet elevates the risk of obesity and blunts circadian rhythms. Recently, we defined the circadian properties of the dorsal vagal complex of the brainstem, a structure implicated in the control of food intake and autonomic tone, but whether and how 24 h rhythms in this area are influenced by diet remains unresolved. Here we focused on a key structure of this complex, the nucleus of the solitary tract (NTS). We used a combination of immunohistochemical and electrophysiological approaches together with daily monitoring of body weight and food intake to interrogate how the neuronal rhythms of the NTS are affected by a high-fat diet. We report that short-term consumption of a high-fat diet increases food intake during the day and blunts NTS daily rhythms in neuronal discharge. Additionally, we found that a high-fat diet dampens NTS responsiveness to metabolic neuropeptides, and decreases orexin immunoreactive fibres in this structure. These alterations occur without prominent body weight gain, suggesting that a high-fat diet acts initially to reduce activity in the NTS to disinhibit mechanisms that suppress daytime feeding. KEY POINTS: The dorsal vagal complex of the rodent hindbrain possesses intrinsic circadian timekeeping mechanisms In particular, the nucleus of the solitary tract (NTS) is a robust circadian oscillator, independent of the master suprachiasmatic clock Here, we reveal that rat NTS neurons display timed daily rhythms in their neuronal activity and responsiveness to ingestive cues These daily rhythms are blunted or eliminated by a short-term high-fat diet, together with increased consumption of calories during the behaviourally quiescent day Our results help us better understand the circadian control of satiety by the brainstem and its malfunctioning under a high-fat diet.


Asunto(s)
Dieta Alta en Grasa , Núcleo Solitario , Animales , Ritmo Circadiano/fisiología , Ingestión de Alimentos/fisiología , Neuronas/metabolismo , Ratas , Núcleo Solitario/metabolismo
11.
Commun Biol ; 4(1): 761, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-34145388

RESUMEN

Regular exercise is important for physical and mental health. An underexplored and intriguing property of exercise is its actions on the body's 24 h or circadian rhythms. Molecular clock cells in the brain's suprachiasmatic nuclei (SCN) use electrical and chemical signals to orchestrate their activity and convey time of day information to the rest of the brain and body. To date, the long-lasting effects of regular physical exercise on SCN clock cell coordination and communication remain unresolved. Utilizing mouse models in which SCN intercellular neuropeptide signaling is impaired as well as those with intact SCN neurochemical signaling, we examined how daily scheduled voluntary exercise (SVE) influenced behavioral rhythms and SCN molecular and neuronal activities. We show that in mice with disrupted neuropeptide signaling, SVE promotes SCN clock cell synchrony and robust 24 h rhythms in behavior. Interestingly, in both intact and neuropeptide signaling deficient animals, SVE reduces SCN neural activity and alters GABAergic signaling. These findings illustrate the potential utility of regular exercise as a long-lasting and effective non-invasive intervention in the elderly or mentally ill where circadian rhythms can be blunted and poorly aligned to the external world.


Asunto(s)
Relojes Circadianos/fisiología , Ritmo Circadiano/fisiología , Condicionamiento Físico Animal/fisiología , Animales , Conducta Animal/fisiología , Neuronas GABAérgicas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Neuropéptidos/metabolismo , Transducción de Señal/fisiología , Núcleo Supraquiasmático/fisiología , Factores de Tiempo
12.
Front Physiol ; 12: 638695, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33762969

RESUMEN

Phasic pattern of neuronal activity has been previously described in detail for magnocellular vasopressin neurons in the hypothalamic paraventricular and supraoptic nuclei. This characteristic bistable pattern consists of alternating periods of electrical silence and elevated neuronal firing, implicated in neuropeptide release. Here, with the use of multi-electrode array recordings ex vivo, we aimed to study the firing pattern of neurons in the nucleus of the solitary tract (NTS) - the brainstem hub for homeostatic, cardio-vascular, and metabolic processes. Our recordings from the mouse and rat hindbrain slices reveal the phasic activity pattern to be displayed by a subset of neurons in the dorsomedial NTS subjacent to the area postrema (AP), with the inter-spike interval distribution closely resembling that reported for phasic magnocellular vasopressin cells. Additionally, we provide interspecies comparison, showing higher phasic frequency and firing rate of phasic NTS cells in mice compared to rats. Further, we describe daily changes in their firing rate and pattern, peaking at the middle of the night. Last, we reveal these phasic cells to be sensitive to α 2 adrenergic receptors activation and to respond to electrical stimulation of the AP. This study provides a comprehensive description of the phasic neuronal activity in the rodent NTS and identifies it as a potential downstream target of the AP noradrenergic system.

13.
Front Behav Neurosci ; 15: 815700, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35153695

RESUMEN

The neural circadian system consists of the master circadian clock in the hypothalamic suprachiasmatic nuclei (SCN) communicating time of day cues to the rest of the body including other brain areas that also rhythmically express circadian clock genes. Over the past 16 years, evidence has emerged to indicate that the habenula of the epithalamus is a candidate extra-SCN circadian oscillator. When isolated from the SCN, the habenula sustains rhythms in clock gene expression and neuronal activity, with the lateral habenula expressing more robust rhythms than the adjacent medial habenula. The lateral habenula is responsive to putative SCN output factors as well as light information conveyed to the perihabenula area. Neuronal activity in the lateral habenula is altered in depression and intriguingly disruptions in circadian rhythms can elevate risk of developing mental health disorders including depression. In this review, we will principally focus on how circadian and light signals affect the lateral habenula and evaluate the possibility that alteration in these influences contribute to mental health disorders.

14.
Methods Mol Biol ; 2130: 263-285, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33284451

RESUMEN

The ability to record ensemble action potential (AP) discharge frequencies from large populations of neurons over extended periods of time in vitro offers clear advantages in neuroscience and circadian biology research. Here, we provide an overview of a step-by-step method to perform multisite extracellular AP activity recordings in suprachiasmatic and mediobasal hypothalamic nuclei brain slices, using a state-of-the-art perforated multielectrode array system. Further, we describe in detail a setup architecture which systematically delivers stable, high-quality recordings with excellent anatomical accuracy and consistency. We also provide some procedural, technical, and methodological troubleshooting notes and examples of good quality recordings.


Asunto(s)
Potenciales de Acción , Electroencefalografía/métodos , Núcleo Supraquiasmático/fisiología , Amplificadores Electrónicos , Animales , Ritmo Circadiano , Electrodos , Electroencefalografía/instrumentación , Electroencefalografía/normas
15.
Heart Rhythm ; 18(5): 801-810, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33278629

RESUMEN

BACKGROUND: Heart rate follows a diurnal variation, and slow heart rhythms occur primarily at night. OBJECTIVE: The lower heart rate during sleep is assumed to be neural in origin, but here we tested whether a day-night difference in intrinsic pacemaking is involved. METHODS: In vivo and in vitro electrocardiographic recordings, vagotomy, transgenics, quantitative polymerase chain reaction, Western blotting, immunohistochemistry, patch clamp, reporter bioluminescence recordings, and chromatin immunoprecipitation were used. RESULTS: The day-night difference in the average heart rate of mice was independent of fluctuations in average locomotor activity and persisted under pharmacological, surgical, and transgenic interruption of autonomic input to the heart. Spontaneous beating rate of isolated (ie, denervated) sinus node (SN) preparations exhibited a day-night rhythm concomitant with rhythmic messenger RNA expression of ion channels including hyperpolarization-activated cyclic nucleotide-gated potassium channel 4 (HCN4). In vitro studies demonstrated 24-hour rhythms in the human HCN4 promoter and the corresponding funny current. The day-night heart rate difference in mice was abolished by HCN block, both in vivo and in the isolated SN. Rhythmic expression of canonical circadian clock transcription factors, for example, Brain and muscle ARNT-Like 1 (BMAL1) and Cryptochrome (CRY) was identified in the SN and disruption of the local clock (by cardiomyocyte-specific knockout of Bmal1) abolished the day-night difference in Hcn4 and intrinsic heart rate. Chromatin immunoprecipitation revealed specific BMAL1 binding sites on Hcn4, linking the local clock with intrinsic rate control. CONCLUSION: The circadian variation in heart rate involves SN local clock-dependent Hcn4 rhythmicity. Data reveal a novel regulator of heart rate and mechanistic insight into bradycardia during sleep.


Asunto(s)
Bradicardia/genética , Relojes Circadianos/fisiología , Electrocardiografía/métodos , Regulación de la Expresión Génica , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , ARN/genética , Nodo Sinoatrial/fisiopatología , Animales , Bradicardia/metabolismo , Bradicardia/fisiopatología , Modelos Animales de Enfermedad , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/biosíntesis , Ratones
16.
Neuron ; 108(3): 486-499.e5, 2020 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-32916091

RESUMEN

Although the mammalian rest-activity cycle is controlled by a "master clock" in the suprachiasmatic nucleus (SCN) of the hypothalamus, it is unclear how firing of individual SCN neurons gates individual features of daily activity. Here, we demonstrate that a specific transcriptomically identified population of mouse VIP+ SCN neurons is active at the "wrong" time of day-nighttime-when most SCN neurons are silent. Using chemogenetic and optogenetic strategies, we show that these neurons and their cellular clocks are necessary and sufficient to gate and time nighttime sleep but have no effect upon daytime sleep. We propose that mouse nighttime sleep, analogous to the human siesta, is a "hard-wired" property gated by specific neurons of the master clock to favor subsequent alertness prior to dawn (a circadian "wake maintenance zone"). Thus, the SCN is not simply a 24-h metronome: specific populations sculpt critical features of the sleep-wake cycle.


Asunto(s)
Ritmo Circadiano/fisiología , Neuronas del Núcleo Supraquiasmático/fisiología , Animales , Masculino , Ratones , Sueño/fisiología , Péptido Intestinal Vasoactivo/metabolismo
17.
Commun Biol ; 3(1): 225, 2020 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-32385329

RESUMEN

Metabolic and cardiovascular processes controlled by the hindbrain exhibit 24 h rhythms, but the extent to which the hindbrain possesses endogenous circadian timekeeping is unresolved. Here we provide compelling evidence that genetic, neuronal, and vascular activities of the brainstem's dorsal vagal complex are subject to intrinsic circadian control with a crucial role for the connection between its components in regulating their rhythmic properties. Robust 24 h variation in clock gene expression in vivo and neuronal firing ex vivo were observed in the area postrema (AP) and nucleus of the solitary tract (NTS), together with enhanced nocturnal responsiveness to metabolic cues. Unexpectedly, we also find functional and molecular evidence for increased penetration of blood borne molecules into the NTS at night. Our findings reveal that the hindbrain houses a local network complex of neuronal and non-neuronal autonomous circadian oscillators, with clear implications for understanding local temporal control of physiology in the brainstem.


Asunto(s)
Relojes Circadianos/fisiología , Rombencéfalo/fisiología , Nervio Vago/fisiología , Animales , Área Postrema/metabolismo , Relojes Circadianos/genética , Técnicas de Sustitución del Gen , Masculino , Ratones , Neuronas/metabolismo , Núcleo Solitario/metabolismo
18.
FASEB J ; 34(1): 974-987, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31914667

RESUMEN

Drinking behavior and osmotic regulatory mechanisms exhibit clear daily variation which is necessary for achieving the homeostatic osmolality. In mammals, the master clock in the brain's suprachiasmatic nuclei has long been held as the main driver of circadian (24 h) rhythms in physiology and behavior. However, rhythmic clock gene expression in other brain sites raises the possibility of local circadian control of neural activity and function. The subfornical organ (SFO) and the organum vasculosum laminae terminalis (OVLT) are two sensory circumventricular organs (sCVOs) that play key roles in the central control of thirst and water homeostasis, but the extent to which they are subject to intrinsic circadian control remains undefined. Using a combination of ex vivo bioluminescence and in vivo gene expression, we report for the first time that the SFO contains an unexpectedly robust autonomous clock with unusual spatiotemporal characteristics in core and noncore clock gene expression. Furthermore, putative single-cell oscillators in the SFO and OVLT are strongly rhythmic and require action potential-dependent communication to maintain synchrony. Our results reveal that these thirst-controlling sCVOs possess intrinsic circadian timekeeping properties and raise the possibility that these contribute to daily regulation of drinking behavior.


Asunto(s)
Ritmo Circadiano , Hipotálamo/fisiología , Prosencéfalo/fisiología , Animales , Órganos Circunventriculares/fisiología , Colforsina/farmacología , Regulación de la Expresión Génica , Homeostasis , Luminiscencia , Masculino , Ratones , Neuronas/fisiología , Oscilometría , Órgano Subfornical/fisiología , Tetrodotoxina/farmacología
19.
Sleep ; 42(11)2019 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-31329251

RESUMEN

Twenty-four hour rhythms of physiology and behavior are driven by the environment and an internal endogenous timing system. Daily restricted feeding (RF) in nocturnal rodents during their inactive phase initiates food anticipatory activity (FAA) and a reorganization of the typical 24-hour sleep-wake structure. Here, we investigate the effects of daytime feeding, where food access was restricted to 4 hours during the light period ZT4-8 (Zeitgeber time; ZT0 is lights on), on sleep-wake architecture and sleep homeostasis in mice. Following 10 days of RF, mice were returned to ad libitum feeding. To mimic the spontaneous wakefulness associated with FAA and daytime feeding, mice were then sleep deprived between ZT3-6. Although the amount of wake increased during FAA and subsequent feeding, total wake time over 24 hours remained stable as the loss of sleep in the light phase was compensated for by an increase in sleep in the dark phase. Interestingly, sleep that followed spontaneous wake episodes during the dark period and the extended period of wake associated with FAA, exhibited lower levels of slow-wave activity (SWA) when compared to baseline or after sleep deprivation, despite a similar duration of waking. This suggests an evolutionary mechanism of reducing sleep drive during negative energy balance to enable greater arousal for food-seeking behaviors. However, the total amount of sleep and SWA accumulated during the 24 hours was similar between baseline and RF. In summary, our study suggests that despite substantial changes in the daily distribution and quality of wake induced by RF, sleep homeostasis is maintained.


Asunto(s)
Ritmo Circadiano/fisiología , Homeostasis/fisiología , Sueño/fisiología , Vigilia/fisiología , Animales , Nivel de Alerta , Electroencefalografía , Alimentos , Masculino , Ratones
20.
Int J Mol Sci ; 20(11)2019 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-31195684

RESUMEN

The kidney harbors one of the strongest circadian clocks in the body. Kidney failure has long been known to cause circadian sleep disturbances. Using an adenine-induced model of chronic kidney disease (CKD) in mice, we probe the possibility that such sleep disturbances originate from aberrant circadian rhythms in kidney. Under the CKD condition, mice developed unstable behavioral circadian rhythms. When observed in isolation in vitro, the pacing of the master clock, the suprachiasmatic nucleus (SCN), remained uncompromised, while the kidney clock became a less robust circadian oscillator with a longer period. We find this analogous to the silencing of a strong slave clock in the brain, the choroid plexus, which alters the pacing of the SCN. We propose that the kidney also contributes to overall circadian timekeeping at the whole-body level, through bottom-up feedback in the hierarchical structure of the mammalian circadian clocks.


Asunto(s)
Relojes Circadianos/fisiología , Riñón/fisiología , Adenina , Animales , Modelos Animales de Enfermedad , Masculino , Ratones Endogámicos C57BL , Proteínas Circadianas Period/metabolismo , Insuficiencia Renal Crónica/sangre , Insuficiencia Renal Crónica/fisiopatología , Núcleo Supraquiasmático/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA