Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Bioengineering (Basel) ; 10(1)2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36671626

RESUMEN

Emotion plays a vital role in understanding the affective state of mind of an individual. In recent years, emotion classification using electroencephalogram (EEG) has emerged as a key element of affective computing. Many researchers have prepared datasets, such as DEAP and SEED, containing EEG signals captured by the elicitation of emotion using audio-visual stimuli, and many studies have been conducted to classify emotions using these datasets. However, baseline power removal is still considered one of the trivial aspects of preprocessing in feature extraction. The most common technique that prevails is subtracting the baseline power from the trial EEG power. In this paper, a novel method called InvBase method is proposed for removing baseline power before extracting features that remain invariant irrespective of the subject. The features extracted from the baseline removed EEG data are then used for classification of two classes of emotion, i.e., valence and arousal. The proposed scheme is compared with subtractive and no-baseline-correction methods. In terms of classification accuracy, it outperforms the existing state-of-art methods in both valence and arousal classification. The InvBase method plus multilayer perceptron shows an improvement of 29% over the no-baseline-correction method and 15% over the subtractive method.

2.
Sensors (Basel) ; 22(8)2022 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-35458940

RESUMEN

Electroencephalogram (EEG) signals may get easily contaminated by muscle artifacts, which may lead to wrong interpretation in the brain-computer interface (BCI) system as well as in various medical diagnoses. The main objective of this paper is to remove muscle artifacts without distorting the information contained in the EEG. A novel multi-stage EEG denoising method is proposed for the first time in which wavelet packet decomposition (WPD) is combined with a modified non-local means (NLM) algorithm. At first, the artifact EEG signal is identified through a pre-trained classifier. Next, the identified EEG signal is decomposed into wavelet coefficients and corrected through a modified NLM filter. Finally, the artifact-free EEG is reconstructed from corrected wavelet coefficients through inverse WPD. To optimize the filter parameters, two meta-heuristic algorithms are used in this paper for the first time. The proposed system is first validated on simulated EEG data and then tested on real EEG data. The proposed approach achieved average mutual information (MI) as 2.9684 ± 0.7045 on real EEG data. The result reveals that the proposed system outperforms recently developed denoising techniques with higher average MI, which indicates that the proposed approach is better in terms of quality of reconstruction and is fully automatic.


Asunto(s)
Artefactos , Análisis de Ondículas , Algoritmos , Electroencefalografía/métodos , Músculos , Procesamiento de Señales Asistido por Computador
3.
Sensors (Basel) ; 22(6)2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35336517

RESUMEN

Emotion recognition using EEG has been widely studied to address the challenges associated with affective computing. Using manual feature extraction methods on EEG signals results in sub-optimal performance by the learning models. With the advancements in deep learning as a tool for automated feature engineering, in this work, a hybrid of manual and automatic feature extraction methods has been proposed. The asymmetry in different brain regions is captured in a 2D vector, termed the AsMap, from the differential entropy features of EEG signals. These AsMaps are then used to extract features automatically using a convolutional neural network model. The proposed feature extraction method has been compared with differential entropy and other feature extraction methods such as relative asymmetry, differential asymmetry and differential caudality. Experiments are conducted using the SJTU emotion EEG dataset and the DEAP dataset on different classification problems based on the number of classes. Results obtained indicate that the proposed method of feature extraction results in higher classification accuracy, outperforming the other feature extraction methods. The highest classification accuracy of 97.10% is achieved on a three-class classification problem using the SJTU emotion EEG dataset. Further, this work has also assessed the impact of window size on classification accuracy.


Asunto(s)
Electroencefalografía , Emociones , Encéfalo , Electroencefalografía/métodos , Entropía , Redes Neurales de la Computación
4.
Data Brief ; 40: 107772, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35036481

RESUMEN

This paper presents a collection of electroencephalogram (EEG) data recorded from 40 subjects (female: 14, male: 26, mean age: 21.5 years). The dataset was recorded from the subjects while performing various tasks such as Stroop color-word test, solving arithmetic questions, identification of symmetric mirror images, and a state of relaxation. The experiment was primarily conducted to monitor the short-term stress elicited in an individual while performing the aforementioned cognitive tasks. The individual tasks were carried out for 25 s and were repeated to record three trials. The EEG was recorded using a 32-channel Emotiv Epoc Flex gel kit. The EEG data were then segmented into non-overlapping epochs of 25 s depending on the various tasks performed by the subjects. The EEG data were further processed to remove the baseline drifts by subtracting the average trend obtained using the Savitzky-Golay filter. Furthermore, the artifacts were also removed from the EEG data by applying wavelet thresholding. The dataset proposed in this paper can aid and support the research activities in the field of brain-computer interface and can also be used in the identification of patterns in the EEG data elicited due to stress.

5.
IEEE J Biomed Health Inform ; 25(2): 475-484, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32750902

RESUMEN

This paper proposes an automatic eyeblink artifacts removal method from corrupted-EEG signals using discrete wavelet transform (DWT) and meta-heuristically optimized threshold. The novel idea of thresholding approximation-coefficients (ACs) instead of detail-coefficients (DCs) of DWT of EEG in a backward manner is proposed for the first time for the removal of eyeblink artifacts. EEG is very sensitive and easily gets affected by eyeblink artifacts. First, the eyeblink corrupted EEG signals are identified using support vector machine (SVM) as a classifier. Then the corrupted EEG signal is decomposed using DWT up to the sixth level. Both the mother wavelet and the level of decomposition are selected using appropriate techniques. Then the ACs are thresholded in backward manner using the optimum threshold values followed by inverse DWT operation to reconstruct the original EEG signal. The AC at level 6 is thresholded and is used in IDWT with DC to get back the AC at level 5. Likewise, the backward thresholding of the ACs followed by IDWT is continued till the artifact free EEG signal is reconstructed at level 1. The optimum values of the thresholds of the ACs at different levels are optimized using two meta-heuristic algorithms, particle swarm optimization (PSO) and grey wolf optimization (GWO) for comparison. The results reveal that the proposed methodology is superior to the recently reported methods in terms of average correlation coefficient (CC) which states that the proposed method is better in terms of the quality of reconstruction in addition to being fully automatic.


Asunto(s)
Artefactos , Análisis de Ondículas , Algoritmos , Electroencefalografía , Procesamiento de Señales Asistido por Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA