Automatic Muscle Artifacts Identification and Removal from Single-Channel EEG Using Wavelet Transform with Meta-Heuristically Optimized Non-Local Means Filter.
Sensors (Basel)
; 22(8)2022 Apr 12.
Article
en En
| MEDLINE
| ID: mdl-35458940
Electroencephalogram (EEG) signals may get easily contaminated by muscle artifacts, which may lead to wrong interpretation in the brain-computer interface (BCI) system as well as in various medical diagnoses. The main objective of this paper is to remove muscle artifacts without distorting the information contained in the EEG. A novel multi-stage EEG denoising method is proposed for the first time in which wavelet packet decomposition (WPD) is combined with a modified non-local means (NLM) algorithm. At first, the artifact EEG signal is identified through a pre-trained classifier. Next, the identified EEG signal is decomposed into wavelet coefficients and corrected through a modified NLM filter. Finally, the artifact-free EEG is reconstructed from corrected wavelet coefficients through inverse WPD. To optimize the filter parameters, two meta-heuristic algorithms are used in this paper for the first time. The proposed system is first validated on simulated EEG data and then tested on real EEG data. The proposed approach achieved average mutual information (MI) as 2.9684 ± 0.7045 on real EEG data. The result reveals that the proposed system outperforms recently developed denoising techniques with higher average MI, which indicates that the proposed approach is better in terms of quality of reconstruction and is fully automatic.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Artefactos
/
Análisis de Ondículas
Tipo de estudio:
Diagnostic_studies
Idioma:
En
Revista:
Sensors (Basel)
Año:
2022
Tipo del documento:
Article
País de afiliación:
India
Pais de publicación:
Suiza