Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Phys Chem B ; 128(10): 2550-2558, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38439714

RESUMEN

Silica-based porous liquids (PLs) are innovative and versatile liquid materials with a high potential, although their application is often restricted to gas sorption. In this work, we propose to evaluate their potential to extract metals. For this goal, we have adapted their synthesis to provide PLs functionalized with thiols that are expected to chelate metallic contaminants, such as lead. As the accessibility of liquids and metals to the PL's porous network is one of the key points for their application, we developed an original small-angle neutron scattering experiment to verify that the PL is permeable to polar liquids. Then, preliminary extraction tests have successfully been carried out, with an extraction of lead cations by complexation on one-third of accessible thiol groups. This work demonstrates that the extraction of metal species by a PL is possible and opens many perspectives for optimization.

2.
Adv Sci (Weinh) ; 11(4): e2305906, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38036426

RESUMEN

Developing greener hydrometallurgical processes implies offering alternatives to conventional solvents used for liquid-liquid extraction (LLE) of metals. In this context, it is proposed to substitute the organic phase by a hydrophobic silica-based porous liquid (PL). Two different sulfonated hollow silica particles (HSPs) are modified with various polyethoxylated fatty amines (EthAs) forming a canopy that provides both the targeted hydrophobicity and liquefying properties. This study shows that these properties can be tuned by varying the number of ethylene oxide units in the EthA: middle-range molecular weight EthAs allow obtaining a liquid at room temperature, while too short or too long EthA leads to solid particles. Viscosity is also impacted by the density and size of the silica spheres: less viscous PLs are obtained with small low-density spheres, while for larger spheres (c.a. 200 nm) the density has a less significant impact on viscosity. According to this approach, hydrophobic PLs are successfully synthesized. When contacted with an aqueous phase, the most hydrophobic PLs obtained allow a subsequent phase separation. Preliminary extraction tests on three rare earth elements have further shown that functionalization of the PL is necessary to observe metal extraction.

3.
J Phys Chem B ; 127(28): 6408-6420, 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37404081

RESUMEN

This study presents a comprehensive investigation of the aggregation behavior of a malonamide extractant molecule (N,N'-dimethyl,N,N'-dioctylhexylethoxymalonamide (DMDOHEMA)) in three different solvents, including two piperidinium- and (trifluoromethylsulfonyl)imide-based ionic liquids (1-ethyl-1-butylpiperidinium bis(trifluoromethylsulfonyl)imide ([EBPip+][NTf2-]) and 1-ethyl-1-octylpiperidinium bis(trifluoromethylsulfonyl)imide ([EOPip+][NTf2-])) and n-dodecane. By combining polarizable molecular dynamics simulations and small-angle X-ray scattering experiments, we extensively investigated the arrangement of supramolecular assemblies of the extractant molecules. Our results showed that the insertion of the alkyl chains of the extractant molecules into the apolar domain of [EOPip+][NTf2-] has a significant impact on the aggregation behavior of the extractant molecules, leading to the formation of smaller aggregates having a higher dispersion compared to other solvents. These findings provide new insights into the physicochemical properties of this type of system and are crucial in designing more effective solvents for rare earth metal extraction.

4.
Chempluschem ; 88(5): e202300103, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36892187

RESUMEN

Invited for this month's cover is the collaborating group of Dr Guilhem Arrachart and Dr Stéphane Pellet-Rostaing at Institut de Chimie Séparative de Marcoule (ICSM). The cover picture shows a person going uranium fishing thanks to the use of bis-catecholamide materials. These materials have shown interesting performance for the recovery of uranium in saline environments such as seawater. More information can be found in the Research Article by G. Arrachart, S. Pellet-Rostaing, and co-workers.

5.
Molecules ; 28(5)2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36903468

RESUMEN

Efficient and selective extractions of precious and critical metal ions such as Au(III) and Pd(II) were investigated using zirconia nanoparticles surface modified with different organic mono- and di-carbamoyl phosphonic acid ligands. The modification is made on the surface of commercial ZrO2 that is dispersed in aqueous suspension and was achieved by optimizing the Bronsted acid-base reaction in ethanol/H2O solution (1:2), resulting in inorganic-organic systems of ZrO2-Ln (Ln: organic carbamoyl phosphonic acid ligand). The presence, binding, amount, and stability of the organic ligand on the surface of zirconia nanoparticles were confirmed by different characterizations such as TGA, BET, ATR-FTIR, and 31P-NMR. Characterizations showed that all the prepared modified zirconia had a similar specific surface area (50 m2.g-1) and the same amount of ligand on the zirconia surface in a 1:50 molar ratio. ATR-FTIR and 31P-NMR data were used to elucidate the most favorable binding mode. Batch adsorption results showed that (i) ZrO2 surface modified with di-carbamoyl phosphonic acid ligands had the highest adsorption efficiency to extract metals than mono-carbamoyl ligands, and (ii) higher hydrophobicity of the ligand led to better adsorption efficiency. The surface-modified ZrO2 with di-N,N-butyl carbamoyl pentyl phosphonic acid ligand (ZrO2-L6) showed promising stability, efficiency, and reusability in industrial applications for selective gold recovery. In terms of thermodynamic and kinetic adsorption data, ZrO2-L6 fits the Langmuir adsorption model and pseudo-second-order kinetic model for the adsorption of Au(III) with maximum experimental adsorption capacity qmax = 6.4 mg.g-1.

6.
Chempluschem ; 88(5): e202200412, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36638257

RESUMEN

This work reports the synthesis of formo-phenolic resins containing four catecholamide (CAM) moieties with admixture of phenol, catechol or resorcinol. These chelating resins have been developed to selectively extract U(VI) from seawater. This media is a challenging environment due to a pH around 8.2 and a large excess of alkaline and earth-alkaline cations. From the various sorption experiments investigated, the results indicate that the synthesized material exhibit good sorbent properties for U(VI) with uptake capacity about 50 mg/g for the more promising resins with a pronounced selectivity for uranium even under saline conditions. Thermodynamic and kinetic adsorption data were determined for the best resin (Langmuir adsorption model and pseudo-second order model).

7.
Phys Chem Chem Phys ; 24(18): 11353-11361, 2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35485971

RESUMEN

Surfactants aggregate in water into micelles, and these micelles incorporate organic substances to solubilize them. Hydrotropes are compounds that increase the solubility of hydrophobic substances in water without this form of aggregation. Decreasing the chain length of the classical surfactant Aerosol OT (AOT) from C8 to C5 results in a molecule with intermediate properties. Molecular dynamics simulations and surface tension measurements are performed on this short chain derivative of AOT. This compound shows high solubility and at the same time progressive weak aggregation. The hydration of head groups hinders significant plunging into a hydrophobic core, which leads to well defined liquid chain nanodomains. The transition to bicontinuous aggregates is in the concentration range of 1 mol L-1. The sulfonate group of the head groups (placed at the water interface of worm-like aggregates) rather than the aggregate-aggregate interaction is responsible for the unusual small angle X-ray scattering pattern.

8.
J Phys Chem B ; 126(17): 3355-3365, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35471118

RESUMEN

The nanoscale organization of some classes of ionic liquids is responsible for their singular properties. In this paper, we use polarizable molecular dynamics simulations and small-angle X-ray scattering to probe the structure of two piperidinium- and (trifluoromethylsulfonyl)imide-based ionic liquids ([EBPip+][NTf2-] and [EOPip+][NTf2-]) that differ in the alkyl chain length of their cation. The X-ray scattering intensities calculated numerically, from the radial distribution functions, are in excellent agreement with the experimental data. The analysis of the different contributions of the X-ray scattering data allowed us to highlight the correlations responsible for the low q peak observed for the long-chain alkyl cations. New angular analyses showed that anions were more likely to align with alkyl chains as their size increased, inducing angular correlation between anions at larger distances. They also showed that the long alkyl chains of the cations aligned more with each other than the short ones. These more aligned alkyl chains induce a smaller volume of the apolar microdomains compared to the well-studied imidazolium-based ionic liquids, leading to the smaller correlation distance for piperidinium-based ionic liquids.


Asunto(s)
Líquidos Iónicos , Aniones , Cationes , Imidas , Simulación de Dinámica Molecular
9.
Polymers (Basel) ; 14(2)2022 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-35054717

RESUMEN

Rare-earth elements (REEs) are involved in most high technology devices and have become critical for many countries. The progress of processes for the extraction and recovery of REEs is therefore essential. Liquid-solid extraction methods are an attractive alternative to the conventional solvent extraction process used for the separation and/or purification of REEs. For this purpose, a solid-phase extraction system was investigated for the extraction and valorization of REEs. Ion-exchange resins were synthesized involving the condensation of terephthalaldehyde with resorcinol under alkaline conditions. The terephthalaldehyde, which is a non-hazardous aromatic dialdehyde, was used as an alternative to formaldehyde that is toxic and traditionally involved to prepare phenolic ion-exchange resins. The resulting formaldehyde-free resole-type phenolic resins were characterized and their ion-exchange capacity was investigated in regard to the extraction of rare-earth elements. We herein present a promising formaldehyde and phenol-free as a potential candidate for solid-liquid extraction REE with a capacity higher than 50 mg/g and the possibility to back-extract the REEs by a striping step using a 2 M HNO3 solution.

10.
Nanomaterials (Basel) ; 11(9)2021 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-34578623

RESUMEN

Based on silica hollow nanospheres grafted with an ionic shell, silica-based type I porous liquids remain poorly exploited, despite their huge versatility. We propose here to explore the main synthesis step of these promising materials with a thorough characterization approach to evaluate their structural and porous properties. Modifying the main synthesis parameter, the mechanism of the spheres' formation is clarified and shows that the calcination temperature, the surfactant concentration as well as the micelle swelling agent concentration allow tuning not only the size of the nanospheres and internal cavities, but also the silica shell microporosity and, therefore, the accessibility of the internal cavities. This study highlights the key parameters of hollow silica nanospheres, which are at the basis of type I porous liquids synthesis with optimized structural and porous properties.

11.
Langmuir ; 37(36): 10637-10656, 2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-34251218

RESUMEN

The phase transfer of ions is driven by gradients of chemical potentials rather than concentrations alone (i.e., by both the molecular forces and entropy). Extraction is a combination of high-energy interactions that correspond to short-range forces in the first solvation shell such as ion pairing or complexation forces, with supramolecular and nanoscale organization. While the latter are similar to the long-range solvent-averaged interactions in the colloidal world, in solvent extraction they are associated with lower characteristic lengths of the nanometric domain. Modeling of such complex systems is especially complicated because the two domains are coupled, whereas the resulting free energy of extraction is around kBT to guarantee the reversibility of the practical process. Nevertheless, quantification is possible by considering a partitioning of space among the polar cores, interfacial film, and solvent. The resulting free energy of transfer can be rationalized by utilizing a combination of terms which represent strong complexation energies, counterbalanced by various entropic effects and the confinement of polar solutes in nanodomains dispersed in the diluent, together with interfacial extractant terms. We describe here this ienaics approach in the context of solvent extraction systems; it can also be applied to further complex ionic systems, such as membranes and biological interfaces.


Asunto(s)
Extracción Líquido-Líquido , Simulación de Dinámica Molecular , Entropía , Soluciones , Solventes
13.
Langmuir ; 36(41): 12121-12129, 2020 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-32845649

RESUMEN

Phase modifiers are often added to solvent extraction processes to avoid the third-phase formation. While this important issue was attributed to sticky interactions between reverse aggregates, structural effects of phase modifiers remain ambiguous. As they are similar to reverse hydrotropes, phase modifiers may act as cosurfactants or cosolvents in the organic phase in a solvent extraction system. We therefore applied an innovative small-angle scattering approach coupled with surface tension measurements on the industrially applied AMEX process to evaluate how phase modifiers repel the third phase and affect the extraction properties. We first confirmed that adding 1-octanol has a small influence on the extraction performance. By varying the scattering contrast of the solution with deuterated 1-octanol, we found that 1-octanol is located both in the solvent, acting as a cosolvent and diluting the aggregates, and in an outer shell of the aggregates. Further surface tension measurements demonstrated that instead of penetrating till the core of the aggregates as a cosurfactant, 1-octanol only penetrates their shell and forms a shielding barrier avoiding the coalescence of aggregates.

14.
Chemistry ; 26(63): 14385-14396, 2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-32529746

RESUMEN

Separation processes based on room temperature ionic liquids (RTIL) and electrochemical refining are promising strategies for the recovery of lanthanides from primary ores and electronic waste. However, they require the speciation of dissolved elements to be known with accuracy. In the present study, Eu coordination and EuIII /EuII electrochemical behavior as a function of water content in 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIm][NTf2 ]) was investigated using UV-visible spectrophotometry, time-resolved laser fluorescence spectroscopy, electrochemistry, and X-ray absorption spectroscopy. In situ measurements were performed in spectroelectrochemical cells. Under anhydrous conditions, EuIII and EuII were complexed by NTf2 , forming Eu-O and Eu-(N,O) bonds with the anion sulfoxide function and N atoms, respectively. This complexation resulted in a greater stability of EuII , and in quasi-reversible oxidation-reduction with an E0 ' potential of 0.18 V versus the ferrocenium/ferrocene (Fc+ /Fc) couple. Upon increasing water content, progressive incorporation of water in the EuIII coordination sphere occurred. This led to reversible oxidation-reduction reactions, but also to a decrease in stability of the +II oxidation state (E0 '=-0.45 V vs. Fc+ /Fc in RTIL containing 1300 mm water).

15.
Chem Commun (Camb) ; 55(53): 7583-7586, 2019 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-31187807

RESUMEN

Knowledge of the complex microstructure in solvent extraction phases is mandatory for a full comprehension of ionic separation. Coupling EXAFS with MD simulations for uranyl extraction in sulfuric media with tertiary amine extractants enabled unravelling of the unprecedented uranyl tri-sulfate structure.

16.
Langmuir ; 35(24): 7905-7915, 2019 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-31088054

RESUMEN

Soft matter structuring is a useful tool for the preparation of well-structured inorganic materials. Here, we report a strategy using a structured solvent based on binary mixtures as a directing agent for silica nanoparticles in aerogel elaboration. Binary mixtures involving water/ethanol and water/ tert-butanol have been respectively chosen as representatives of unstructured and structured solvents. The water/alcohol/TEOS systems were effectively characterized as surfactant-free microemulsions. The enhanced solvent structuring, however, disappears upon the reaction with TEOS, and assembly is directed by solvent structuring found in the binary mixtures. For the first time, the influence of solvent composition on the sol-gel reaction was investigated with respect to the reaction rate and the structuring behavior thanks to dynamic light scattering (DLS), small- and wide-angle X-ray scattering (SWAXS), and transmission electron microscopy (TEM) experiments. The silica nanoparticles aggregate in a different manner depending on the solvent composition, which allows the change in the morphology, the degree of interconnection, and the surface area of the resulting material. Silica nanoparticles with a very high surface area of up to 2000 m2/g can be obtained by this approach.

17.
Dalton Trans ; 47(41): 14594-14603, 2018 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-30259929

RESUMEN

The selective extraction of uranium by N-octylcalix[4]azacrown (NOCAC) and N-ethylhexylcalix[4]azacrown (NEHCAC) was investigated. The ligands were synthesised in three steps through the functionalisation of t-butyl calix[4]arene at the distal-1,3-positions of the lower rim with ethyl acetate groups followed by cyclisation with (imino)bis(ethane-2,1-diyl)diamide. A detailed investigation on the effect of various parameters, such as the aqueous phase acidity (sulfuric acid), the ionic strength, and ligand concentration, on the extraction of uranium(vi) has been conducted. The effect of the H2SO4 concentration has been studied from 0.02 to 3 M. Preliminary studies carried out on NOCAC in dodecane/octanol diluents showed that the uranium extraction from sulfuric acid is more efficient at a low H2SO4 concentrations. The stoichiometry of complexation was estimated from the slope method, NMR titration, and electrospray ionisation-mass spectrometry analysis. Both ligands were found to be highly selective for uranium(vi) over other competitive cations present in a simulated leach solution containing seven competitive cations. The successful recovery of the uranium from the organic phase has been performed thanks to stripping steps involving ammonium oxalate, ammonium carbonate, and sodium carbonate as stripping agents.

18.
ACS Cent Sci ; 2(7): 467-75, 2016 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-27504493

RESUMEN

We show that three different morphologies exist near the two-phase boundary of ternary systems containing a hydrotropic cosolvent. Based on synchrotron small- and wide-angle X-ray scattering combined with molecular dynamics, we rationalize the specific scattering signature of direct, bicontinuous, and reverse mesoscale solubilization. Surprisingly, these mesostructures are resilient toward strong acids, which are required in industrial applications. However, on a macroscopic scale, the phase boundary shifts in salting-in and salting-out in the direct and respectively reverse regime, leading to a crossing of the binodals.

19.
Langmuir ; 32(18): 4624-34, 2016 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-27081741

RESUMEN

The self-assembly of amino-undecyl-triethoxysilane (AUT) as micelles in water is considered. The behavior of acid/AUT systems is governed by a complete proton transfer from the acid to the amine, leading to the formation of an ammonium headgroup. This moiety is responsible for the bending of the interface between the organic core of the micelles and the surrounding water. By playing with the size of the acid used as curvature agent, the amphiphilic behavior of the organosilane molecule may be adjusted. We follow the aggregation as the curvature agent size increases. This approach constitutes an efficient and original method in order to tune the nanostructure of highly functionalized silica at the early stage of the elaboration. Small-angle X-ray scattering, wet scanning transmission electron microscopy, dynamic light scattering, and complementary characterization techniques indicate that hybrid organic-inorganic planar objects and vesicles are obtained for smaller curvature agents. Increasing the size of the curvature agent results in a transition of the aggregation geometry from vesicles to cylindrical direct micelles, finally leading to nanofibers organized in a 2D hexagonal network resembling a "reverse MCM-41 structure". A geometrical molecular self-assembly model is finally proposed, considering the dimensions of the surfactant tail and those of the head groups.

20.
ChemMedChem ; 11(3): 320-30, 2016 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-26732895

RESUMEN

An innovative and straightforward synthesis of second-generation 2-arylbenzo[b]thiophenes as structural analogues of INF55 and the first generation of our laboratory-made molecules was developed. The synthesis of C2-arylated benzo[b]thiophene derivatives was achieved through a method involving direct arylation, followed by simple structural modifications. Among the 34 compounds tested, two of them were potent NorA pump inhibitors, which led to a 16-fold decrease in the ciprofloxacin minimum inhibitory concentration (MIC) against the SA-1199B strain at concentrations of 0.25 and 0.5 µg mL(-1) (1 and 1.5 µm, respectively). This is a promising result relative to that obtained for reserpine (MIC=20 µg mL(-1)), a reference compound amongst NorA pump inhibitors. These molecules thus represent promising candidates to be used in combination with ciprofloxacin against fluoroquinolone-resistant strains.


Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/antagonistas & inhibidores , Staphylococcus/efectos de los fármacos , Tiofenos/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Relación Dosis-Respuesta a Droga , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Staphylococcus/química , Relación Estructura-Actividad , Tiofenos/síntesis química , Tiofenos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA