Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 145(22): 12386-12397, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37224413

RESUMEN

Organosulfur polymers, such as those derived from elemental sulfur, are an important new class of macromolecules that have recently emerged via the inverse vulcanization process. Since the launching of this new field in 2013, the development of new monomers and organopolysulfide materials based on the inverse vulcanization process is now an active area in polymer chemistry. While numerous advances have been made over the last decade concerning this polymerization process, insights into the mechanism of inverse vulcanization and structural characterization of the high-sulfur-content copolymers that are produced remain challenging due to the increasing insolubility of the materials with a higher sulfur content. Furthermore, the high temperatures used in this process can result in side reactions and complex microstructures of the copolymer backbone, complicating detailed characterization. The most widely studied case of inverse vulcanization to date remains the reaction between S8 and 1,3-diisopropenylbenzene (DIB) to form poly(sulfur-random-1,3-diisopropenylbenzene)(poly(S-r-DIB)). Here, to determine the correct microstructure of poly(S-r-DIB), we performed comprehensive structural characterizations of poly(S-r-DIB) using nuclear magnetic resonance spectroscopy (solid state and solution) and analysis of sulfurated DIB units using designer S-S cleavage polymer degradation approaches, along with complementary de novo synthesis of the sulfurated DIB fragments. These studies reveal that the previously proposed repeating units for poly(S-r-DIB) were incorrect and that the polymerization mechanism of this process is significantly more complex than initially proposed. Density functional theory calculations were also conducted to provide mechanistic insights into the formation of the derived nonintuitive microstructure of poly(S-r-DIB).

2.
Angew Chem Int Ed Engl ; 60(42): 22900-22907, 2021 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-34402154

RESUMEN

The production of elemental sulfur from petroleum refining has created a technological opportunity to increase the valorization of elemental sulfur by the creation of high-performance sulfur based plastics with improved thermomechanical properties, elasticity and flame retardancy. We report on a synthetic polymerization methodology to prepare the first example of sulfur based segmented multi-block polyurethanes (SPUs) and thermoplastic elastomers that incorporate an appreciable amount of sulfur into the final target material. This approach applied both the inverse vulcanization of S8 with olefinic alcohols and dynamic covalent polymerizations with dienes to prepare sulfur polyols and terpolyols that were used in polymerizations with aromatic diisocyanates and short chain diols. Using these methods, a new class of high molecular weight, soluble block copolymer polyurethanes were prepared as confirmed by Size Exclusion Chromatography, NMR spectroscopy, thermal analysis, and microscopic imaging. These sulfur-based polyurethanes were readily solution processed into large area free standing films where both the tensile strength and elasticity of these materials were controlled by variation of the sulfur polyol composition. SPUs with both high tensile strength (13-24 MPa) and ductility (348 % strain at break) were prepared, along with SPU thermoplastic elastomers (578 % strain at break) which are comparable values to classical thermoplastic polyurethanes (TPUs). The incorporation of sulfur into these polyurethanes enhanced flame retardancy in comparison to classical TPUs, which points to the opportunity to impart new properties to polymeric materials as a consequence of using elemental sulfur.

3.
Angew Chem Int Ed Engl ; 58(49): 17656-17660, 2019 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-31541498

RESUMEN

Optical technologies in the long-wave infrared (LWIR) spectrum (7-14 µm) offer important advantages for high-resolution thermal imaging in near or complete darkness. The use of polymeric transmissive materials for IR imaging offers numerous cost and processing advantages but suffers from inferior optical properties in the LWIR spectrum. A major challenge in the design of LWIR-transparent organic materials is that nearly all organic molecules absorb in this spectral window which lies within the so-called IR-fingerprint region. We report on a new molecular-design approach to prepare high refractive index polymers with enhanced LWIR transparency. Computational methods were used to accelerate the design of novel molecules and polymers. Using this approach, we have prepared chalcogenide hybrid inorganic/organic polymers (CHIPs) with enhanced LWIR transparency and thermomechanical properties via inverse vulcanization of elemental sulfur with new organic co-monomers.

4.
RSC Adv ; 8(38): 21174-21183, 2018 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35539901

RESUMEN

Supported chiral ionic liquids (SILs) were prepared choosing the starting material for the ionic liquid part from the enantiopure stock of the chiral pool (monoterpenoids and an amino acid) and the sporopollenin as an environmentally friendly support. Sporopollenins are microcapsules with naturally well-defined sizes and shapes that can be obtained from pollen grains after removal of the internal cytoplasm and the second shell layer. As thermally stable organic biocompatible structures, sporopollenins have attracted increasing interest in recent years for several applications. Herein, bio-based ILs were anchored onto the surface of sporopollenins obtained from the pollen of Populus deltoides, selected as a model pollen grain. These new structures, which present an external positively charged shell, were characterized by physico-chemical techniques (ATR-FTIR, TGA, SEM, EDX, and solid-state 13C NMR). A metathesis reaction was also performed on selected bio-based IL modified sporopollenins, demonstrating the possibility to switch the surface properties by exploiting well-known IL chemistry.

5.
Dalton Trans ; 43(27): 10617-27, 2014 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-24835643

RESUMEN

The influence of H3BO3 on the crystallization of hybrid organic-inorganic aluminosilicates denoted as Eni Carbon Silicates (ECS's) was investigated. Syntheses were carried out at 100 °C under different experimental conditions, using bridged silsesquioxanes of general formula (EtO)3Si-R-Si(OEt)3 (R = -C6H4- (BTEB), -C10H6- (BTEN) and -C6H4-C6H4- (BTEBP)), in the presence of equimolar concentrations of NaAlO2 and H3BO3. The study, involving the synthesis of three different but structurally related phases (ECS-14 from BTEB, ECS-13 here described for the first time from BTEN, and ECS-5 from BTEBP), confirmed a catalytic role for H3BO3 which in general increased the crystallization rate and improved the product quality in terms of amount of crystallized phase (crystallinity), size of the crystallites and phase purity, while it was weakly incorporated in trace amounts in the framework of ECS's.

6.
J Am Chem Soc ; 136(6): 2511-9, 2014 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-24451039

RESUMEN

Novel layered zeolitic organic-inorganic materials have been synthesized using a two-dimensional zeolite precursor IPC-1P prepared by a top-down approach from zeolite UTL. The formation of porous materials containing organic linkers or polyhedral oligomeric siloxane covalently bonded to zeolite layers in the interlayer space was confirmed by a variety of characterization techniques (N2/Ar sorption analysis, XRD, (29)Si and (13)C NMR, TEM). The organic-inorganic porous hybrids obtained by intercalation with silsesquioxane posessed layered morphology and contained large crystalline domains. The hybrids exhibited mesoporous or hierarchical micro-/mesoporous systems, stable up to 350 °C. Textural properties of the formed zeolitic organic-inorganic materials can be controlled by varying the linker or synthetic conditions over a broad range. Surface areas and pore volumes of synthesized hybrids significantly exceed those for parent zeolite UTL and corresponding swollen material; the amount of micropores increased with increasing rigidity and size of the organic linker in the order biphenyl > phenylene > ethanediyl.

7.
Chem Commun (Camb) ; 48(59): 7356-8, 2012 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-22717682

RESUMEN

ECS-14, a crystalline microporous hybrid organic-inorganic aluminosilicate, has been synthesized by using 1,4-bis-(triethoxysilyl)-benzene (BTEB) as a source of silica. Its structure contains a system of linear channels with 12-membered ring openings, running along the [001] direction, resembling the pore architecture of the AFI framework type.

9.
J Chromatogr A ; 1216(14): 2891-9, 2009 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-19010479

RESUMEN

A detailed mass map of C(10)'s is required to better understand the mechanism of decalin catalytic ring opening/rearrangement. Conventional GC-FID or GC-MSD techniques could not accurately identify these isomers. Comprehensive two-dimensional gas-chromatography with MSD (GCxGC-MSD) proved to be a powerful tool for this purpose, due to its enhanced peak resolution. Analytical response quality was evaluated by the separation of two contiguous peaks and MS profile "clearness". This allowed fragmentation study for nearly pure species. Tentative attributions, based on fragmentation-rearrangement in the MSD environment, were made after confirming that MS data bases routinely mistake olefins for cyclo-alkanes.


Asunto(s)
Alcanos/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Naftalenos/análisis , Catálisis , Isomerismo
10.
J Am Chem Soc ; 128(5): 1450-1, 2006 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-16448106

RESUMEN

Progressive isomorphous incorporation of TiIV (or BIII) heteroatoms into the MFI structure of as-synthesized silicalite-1 caused a decrease in the amount of siloxy groups (anions), requisite for counter-balancing the structural directing agent (cation), as determined using 1H MAS NMR to quantify the silanol protons H-bonded to the siloxy oxygen. This revealed the negative charge on the incorporated heteroatoms, identifying them as TiO5 (or BO4) sites.

11.
Inorg Chem ; 36(4): 571-575, 1997 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-29019696

RESUMEN

The species resulting from a typical preparation for metal-substituted hybrids of the Keggin tridecamer, Al13 or [AlO4Al12(OH)24(OH2)12]7+, were examined by performing 27Al NMR on the solutions during aging and by studying the precipitated sulfate salts via solid state 27Al NMR and powder X-ray diffraction (XRD). Aqueous mixtures (0.25 mol L-1) of AlCl3 and another metal ion (M), in a 12:1 mole ratio (Al:M), where M = Fe3+, Zn2+, Ga3+, In3+, Sn2+, La3+, and Bi3+, were subjected to forced hydrolysis by addition of NaOH (1.0 mol L-1) until OH/(Al + M) = 2.25, and the kinetics of Al13 formation and disappearance with aging at 80 °C was monitored by 27Al NMR spectroscopy. Al13 units polymerize on aging with an apparent rate constant (k) of 4.8(8) × 10-2 h-1 to form a species referred to as AlP2. Only the solutions containing Ga3+ and Sn2+ exhibited faster Al13 conversion rates. GaAl12 forms quickly at 80 °C (k = 0.54 h-1) and is more stable than AlP2. Sn2+ apparently promotes AlP2 formation (k = 0.38 h-1). XRD and solid state NMR reveal that only the Ga hybrid can be prepared by this method. No hybrid formation was evidenced using M = Mg2+, Fe3+, Co2+, Ni2+, Cu2+, Zn2+, In3+, La3+, or Ce3+ at 25 °C or M = Co2+ or La3+ under reflux conditions. Isostructural (cubic symmetry) single crystals were obtained for the sulfate salts of Al13 and GaAl12. Single-crystal XRD analysis of these two polyoxocations provides the first rigorous comparison between them and shows they have very similar structures. The main crystallographic data for Al13 and GaAl12 are as follows: Na[AlO4Al12(OH)24(H2O)12](SO4)4·10H2O, cubic, F4̄3m, a = 17.856(2) Å, Z = 4; Na[GaO4Al12(OH)24(H2O)12](SO4)4·10H2O, cubic, F4̄3m, a = 17.869(3) Å, Z = 4. Thus, the greater thermal stability of GaAl12 cannot be rationalized in terms of the overall geometric considerations, as suggested by others. Solid state NMR also shows the coordination symmetries of the outer 12 Al nuclei in both clusters to be similar.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA