Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 946: 174150, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-38909819

RESUMEN

The presence of microplastics (MPs) has been reported in ecosystems in the most different regions of the world and rivers have been identified as one of the main means of transporting this debris to oceans. Recent research shows microplastic deposition and accumulation in the Amazon Basin and, despite being scarce, microplastic pollution is ubiquitous in the region. Of the 9 countries that make up the Amazon Basin, only Brazil, Guyana, Ecuador and Peru have published on the topic, with the main focus on biota (58 %). Several Amazon regions such as Northern Amazon in the Far North of Brazil still have no evidence of microplastic pollution with published data. MP abundance ranges from 5 to 74,500 MPs m-3 for waters, 0 to 8178 MPs kg-1 for sediment and 0.34 to 38.3 MPs individual-1 for biota, with nanoplastic scale (<100 µm) in the sediment. Blue and colorless are the predominant colors, mainly from secondary sources (fibers and fragments). The most commonly found polymers are polyamide, polyethyleneterephthalate and polypropylene. Microplastic abundance in aquatic systems is higher than that found in other rivers, such as the Guayas in Ecuador, the Magdalena, in Colombia and the Surabaya in Indonesia and are similar to regions with intense anthropogenic activity such as the Guanabara Bay - Brazil and the Yellow River in China. The precarious basic sanitation structure, urban planning, waste management, combined with the extensive network of navigable waters, are aggravating factors for the increase in plastic pollution in the region. It is necessary to increase research investment on the topic, considering MP quantification, impacts and the relationship with the hydrosedimentological dynamics of the Amazon Basin. The creation and enforcement of laws that minimize the accumulation of these materials is emerging, besides the development of the bioeconomy and sustainable proposals to minimize plastic pollution in the Amazon.

2.
Biosensors (Basel) ; 12(2)2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35200330

RESUMEN

The differentiation of cultivars is carried out by means of morphological descriptors, in addition to molecular markers. In this work, near-infrared spectroscopy (NIR) and chemometric techniques were used to develop classification models for two different commercial sesame cultivars (Sesamum indicum) and 3 different strains. The diffuse reflectance spectra were recorded in the region of 700 to 2500 nm. Based on the application of chemometric techniques: principal component analysis-PCA, hierarchical cluster analysis-HCA, k-nearest neighbor-KNN and the flexible independent modeling of class analogy-SIMCA, from the infrared spectra in the near region, it was possible to perform the genotyping of two sesame cultivars (BRS Seda and BRS Anahí), and to classify these cultivars with 3 different sesame strains, obtaining 100% accurate results. Due to the good results obtained with the implemented models, the potential of the methods for a possible realization of forensic, fast and non-destructive authentication, in intact sesame seeds was evident.


Asunto(s)
Sesamum , Espectroscopía Infrarroja Corta , Quimiometría , Genotipo , Análisis de Componente Principal , Espectroscopía Infrarroja Corta/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA