Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Gut Microbes ; 16(1): 2392877, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39189642

RESUMEN

Salmonella enterica serovar Typhimurium (STm) causes gastroenteritis and can progress to reactive arthritis (ReA). STm forms biofilms in the gut that secrete the amyloid curli, which we previously demonstrated can trigger autoimmunity in mice. HLA-B27 is a genetic risk factor for ReA; activation of the unfolded protein response (UPR) due to HLA-B27 misfolding is thought to play a critical role in ReA pathogenesis. To determine whether curli exacerbates HLA-B27-induced UPR, bone marrow-derived macrophages (BMDMs) isolated from HLA-B27 transgenic (tg) mice were used. BMDMs treated with purified curli exhibited elevated UPR compared to C57BL/6, and curli-induced IL-6 was reduced by pre-treating macrophages with inhibitors of the IRE1α branch of the UPR. In BMDMs, intracellular curli colocalized with GRP78, a regulator of the UPR. In vivo, acute infection with wild-type STm increased UPR markers in the ceca of HLA-B27tg mice compared to C57BL/6. STm biofilms that contain curli were visible in the lumen of cecal tissue sections. Furthermore, curli was associated with macrophages in the lamina propria, colocalizing with GRP78. Together, these results suggest that UPR plays a role in the curli-induced inflammatory response, especially in the presence of HLA-B27, a possible mechanistic link between STm infection and genetic susceptibility to ReA.


Asunto(s)
Proteínas Bacterianas , Chaperón BiP del Retículo Endoplásmico , Endorribonucleasas , Antígeno HLA-B27 , Macrófagos , Proteínas Serina-Treonina Quinasas , Salmonella typhimurium , Respuesta de Proteína Desplegada , Animales , Humanos , Ratones , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Endorribonucleasas/metabolismo , Endorribonucleasas/genética , Antígeno HLA-B27/genética , Antígeno HLA-B27/metabolismo , Antígeno HLA-B27/inmunología , Interleucina-6/metabolismo , Interleucina-6/genética , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/microbiología , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Infecciones por Salmonella/inmunología , Infecciones por Salmonella/microbiología , Salmonella typhimurium/inmunología
2.
Infect Immun ; : e0026624, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39133016

RESUMEN

Salmonella enterica serovar Typhimurium (S. Typhimurium) infection triggers an inflammatory response that changes the concentration of metabolites in the gut impacting the luminal environment. Some of these environmental adjustments are conducive to S. Typhimurium growth, such as the increased concentrations of nitrate and tetrathionate or the reduced levels of Clostridia-produced butyrate. We recently demonstrated that S. Typhimurium can form biofilms within the host environment and respond to nitrate as a signaling molecule, enabling it to transition between sessile and planktonic states. To investigate whether S. Typhimurium utilizes additional metabolites to regulate its behavior, our study delved into the impact of inflammatory metabolites on biofilm formation. The results revealed that lactate, the most prevalent metabolite in the inflammatory environment, impedes biofilm development by reducing intracellular c-di-GMP levels, suppressing the expression of curli and cellulose, and increasing the expression of flagellar genes. A transcriptomic analysis determined that the expression of the de novo purine pathway increases during high lactate conditions, and a transposon mutagenesis genetic screen identified that PurA and PurG, in particular, play a significant role in the inhibition of curli expression and biofilm formation. Lactate also increases the transcription of the type III secretion system genes involved in tissue invasion. Finally, we show that the pyruvate-modulated two-component system BtsSR is activated in the presence of high lactate, which suggests that lactate-derived pyruvate activates BtsSR system after being exported from the cytosol. All these findings propose that lactate is an important inflammatory metabolite used by S. Typhimurium to transition from a biofilm to a motile state and fine-tune its virulence.IMPORTANCEWhen colonizing the gut, Salmonella enterica serovar Typhimurium (S. Typhimurium) adopts a dynamic lifestyle that alternates between a virulent planktonic state and a multicellular biofilm state. The coexistence of biofilm formers and planktonic S. Typhimurium in the gut suggests the presence of regulatory mechanisms that control planktonic-to-sessile transition. The signals triggering the transition of S. Typhimurium between these two lifestyles are not fully explored. In this work, we demonstrated that in the presence of lactate, the most dominant host-derived metabolite in the inflamed gut, there is a reduction of c-di-GMP in S. Typhimurium, which subsequently inhibits biofilm formation and induces the expression of its invasion machinery, motility genes, and de novo purine metabolic pathway genes. Furthermore, high levels of lactate activate the BtsSR two-component system. Collectively, this work presents new insights toward the comprehension of host metabolism and gut microenvironment roles in the regulation of S. Typhimurium biology during infection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA