Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
G3 (Bethesda) ; 13(12)2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37816307

RESUMEN

Several species of sacoglossan sea slugs possess the incredible ability to sequester chloroplasts from the algae they consume. These "photosynthetic animals" incorporate stolen chloroplasts, called kleptoplasts, into the epithelial cells of tubules that extend from their digestive tracts throughout their bodies. The mechanism by which these slugs maintain functioning kleptoplasts in the absence of an algal nuclear genome is unknown. Here, we report a draft genome of the sacoglossan slug Elysia crispata morphotype clarki, a morphotype native to the Florida Keys that can retain photosynthetically active kleptoplasts for several months without feeding. We used a combination of Oxford Nanopore Technologies long reads and Illumina short reads to produce a 786-Mb assembly (N50 = 0.459 Mb) containing 68,514 predicted protein-coding genes. A phylogenetic analysis found no evidence of horizontal acquisition of genes from algae. We performed gene family and gene expression analyses to identify E. crispata genes unique to kleptoplast-containing slugs that were more highly expressed in fed versus unfed developmental life stages. Consistent with analyses in other kleptoplastic slugs, our investigation suggests that genes encoding lectin carbohydrate-binding proteins and those involved in regulation of reactive oxygen species and immunity may play a role in kleptoplast retention. Lastly, we identified four polyketide synthase genes that could potentially encode proteins producing UV- and oxidation-blocking compounds in slug cell membranes. The genome of E. crispata is a quality resource that provides potential targets for functional analyses and enables further investigation into the evolution and mechanisms of kleptoplasty in animals.


Asunto(s)
Gastrópodos , Fotosíntesis , Animales , Filogenia , Cloroplastos/metabolismo , Gastrópodos/genética , Genoma
2.
Genome Biol Evol ; 14(4)2022 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-35420669

RESUMEN

Members of the Peronosporaceae (Oomycota, Chromista), which currently consists of 25 genera and approximately 1,000 recognized species, are responsible for disease on a wide range of plant hosts. Molecular phylogenetic analyses over the last two decades have improved our understanding of evolutionary relationships within Peronosporaceae. To date, 16 numbered and three named clades have been recognized; it is clear from these studies that the current taxonomy does not reflect evolutionary relationships. Whole organelle genome sequences are an increasingly important source of phylogenetic information, and in this study, we present comparative and phylogenetic analyses of mitogenome sequences from 15 of the 19 currently recognized clades of Peronosporaceae, including 44 newly assembled sequences. Our analyses suggest strong conservation of mitogenome size and gene content across Peronosporaceae but, as previous studies have suggested, limited conservation of synteny. Specifically, we identified 28 distinct syntenies amongst the 71 examined isolates. Moreover, 19 of the isolates contained inverted or direct repeats, suggesting repeated sequences may be more common than previously thought. In terms of phylogenetic relationships, our analyses of 34 concatenated mitochondrial gene sequences resulted in a topology that was broadly consistent with previous studies. However, unlike previous studies concatenated mitochondrial sequences provided strong support for higher-level relationships within the family.


Asunto(s)
Genoma Mitocondrial , Oomicetos , Evolución Molecular , Genes Mitocondriales , Oomicetos/genética , Filogenia , Sintenía
3.
Foodborne Pathog Dis ; 18(6): 413-418, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33902330

RESUMEN

Listeria monocytogenes is regularly isolated from food processing environments and is endemic in some facilities. Bacteriophage have potential as biocontrol strategies for L. monocytogenes. In this study, the lytic capacity of a commercial Listeria phage cocktail was evaluated against a library of 475 Listeria spp. isolates (426 L. monocytogenes and 49 other Listeria spp.) with varied genotypic and phenotypic characteristics. The lytic capacity of the Listeria phages was measured by spot assays where lysis was scored on a scale of 0-3 (0 = no lysis; 1 = slight lysis; 2 = moderate lysis; 3 = confluent lysis). Only 5% of all tested Listeria spp. isolates, including L. monocytogenes, were either moderately or highly susceptible (score 2 or 3) to lysis by Listeria phage when scores were averaged across temperature and phage concentration; 155 of 5700 treatment (multiplicity of infection [MOI] and temperature) and characteristic (genotype, sanitizer tolerance, and attachment capacity) combinations resulted in confluent lysis (score = 3). Odds ratios for susceptibility to lysis were calculated using multinomial logistic regression. The odds of susceptibility to lysis by phage decreased (p < 0.05) if the L. monocytogenes isolate was previously found to persist or if the phage-bacteria culture was incubated at 30°C; neither isolate persistence or temperature was significant (p ≥ 0.05) when all factors were considered. In addition, lytic efficacy varied (p < 0.05) among pulse field gel electrophoresis (PFGE) pulsotypes and may be affected by host MOI (p < 0.05). There was no effect (p > 0.05) of attachment capacity or sanitizer tolerance on phage susceptibility. This study underscores the complexity of using Listeria phage as a biocontrol for Listeria spp. in food processing facilities and highlights that phage susceptibility is most greatly impacted by genotype. Further studies are needed to evaluate these findings within a processing environment.


Asunto(s)
Bacteriólisis/genética , Bacteriófagos/fisiología , Manipulación de Alimentos , Microbiología de Alimentos , Listeria monocytogenes/fisiología , Bacteriófagos/genética , Genotipo , Listeria monocytogenes/genética , Fenotipo
4.
Appl Environ Microbiol ; 85(16)2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31175193

RESUMEN

Salmonella enterica serovar Heidelberg is currently the 12th most common serovar of Salmonella enterica causing salmonellosis in the United States and results in twice the average incidence of blood infections caused by nontyphoidal salmonellae. Multiple outbreaks of salmonellosis caused by Salmonella Heidelberg resulted from the same poultry processor, which infected 634 people during 2013 and 2014. The hospitalization and invasive illness rates were 38% and 15%, respectively. We hypothesized that the outbreak strains of Salmonella Heidelberg had enhanced stress tolerance and virulence capabilities. We sourced nine food isolates collected during the outbreak investigation and three reference isolates to assess their tolerance to heat and sanitizers, ability to attach to abiotic surfaces, and invasiveness in vitro We performed RNA sequencing on three isolates (two outbreak-associated isolates and a reference Salmonella Heidelberg strain) with various levels of heat tolerance to gain insight into the mechanism behind the isolates' enhanced heat tolerance. We also performed genomic analyses to determine the genetic relationships among the outbreak isolates. Ultimately, we determined that (i) six Salmonella Heidelberg isolates associated with the foodborne outbreak had enhanced heat tolerance, (ii) one outbreak isolate with enhanced heat tolerance also had an enhanced biofilm-forming ability under stressful conditions, (iii) exposure to heat stress increased the expression of Salmonella Heidelberg multidrug efflux and virulence genes, and (iv) outbreak-associated isolates were likely transcriptionally primed to better survive processing stresses and, potentially, to cause illness.IMPORTANCE This study provides a deep analysis of the intrinsic stress tolerance and virulence capabilities of Salmonella Heidelberg that may have contributed to the length and severity of a recent salmonellosis outbreak. Additionally, this study provides a comprehensive analysis of the transcriptomic response of S. enterica strains to heat stress conditions and compares baseline stationary-phase gene expression among outbreak- and non-outbreak-associated Salmonella Heidelberg isolates. These data can be used in assay development to screen isolates for stress tolerance and subsequent survival. This study adds to our understanding of the strains associated with the outbreak and informs ongoing regulatory discussions on Salmonella in poultry.


Asunto(s)
Infecciones por Salmonella/microbiología , Salmonella enterica/aislamiento & purificación , Salmonella enterica/fisiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Humanos , Intoxicación Alimentaria por Salmonella/epidemiología , Intoxicación Alimentaria por Salmonella/microbiología , Infecciones por Salmonella/epidemiología , Salmonella enterica/clasificación , Salmonella enterica/genética , Estrés Fisiológico , Estados Unidos/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA