Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Vis Exp ; (210)2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39248529

RESUMEN

Lipids are highly diverse, and small changes in lipid structures and composition can have profound effects on critical biological functions. Stable isotope labeling (SIL) offers several advantages for the study of lipid distribution, mobilization, and metabolism, as well as de novo lipid synthesis. The successful implementation of the SIL technique requires the removal of interferences from endogenous molecules. In the present work, we describe a high-throughput analytical protocol for the screening of SIL lipids from biological samples; examples will be shown of lipid de novo identification during mosquito ovary development. The use of complementary liquid chromatography trapped ion mobility spectrometry and mass spectrometry allows for the separation and lipids assignment from a single sample in a single scan (<1 h). The described approach takes advantage of recent developments in data-dependent acquisition and data-independent acquisition, using parallel accumulation in the mobility trap followed by sequential fragmentation and collision-induced dissociation. The measurement of SIL at the fatty acid chain level reveals changes in lipid dynamics during the ovary development of mosquitoes. The lipids de novo structures are confidently assigned based on their retention time, mobility, and fragmentation pattern.


Asunto(s)
Marcaje Isotópico , Lípidos , Espectrometría de Masas en Tándem , Marcaje Isotópico/métodos , Animales , Lípidos/análisis , Lípidos/química , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , Femenino , Ovario/metabolismo , Ovario/química
2.
bioRxiv ; 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38979180

RESUMEN

Dietary restriction slows aging in many animals, while in some cases the sensory signals from diet alone are sufficient to retard or accelerate lifespan. The digestive tract is a candidate location to sense nutrients, where neuropeptides secreted by enteroendocrine cells (EEC) produce systemic signals in response to food. Here we measure how Drosophila neuropeptide F (NPF) is secreted into adult circulation by enteroendocrine cells and find that specific enteroendocrine cells differentially respond to dietary sugar and yeast. Lifespan is increased when gut NPF is genetically depleted, and this manipulation is sufficient to blunt the longevity benefit conferred by dietary restriction. Depletion of NPF receptors at insulin producing neurons of the brain also increases lifespan, consistent with observations where loss of gut NPF decreases neuronal insulin secretion. The longevity conferred by repressing gut NPF and brain NPF receptors is reversed by treating adults with a juvenile hormone (JH) analog. JH is produced by the adult corpora allata, and inhibition of the insulin receptor at this tissue decreases JH titer and extends lifespan, while this longevity is restored to wild type by treating adults with a JH analog. Overall, enteroendocrine cells of the gut modulate Drosophila aging through interorgan communication mediated by a gut-brain-corpora allata axis, and insulin produced in the brain impacts lifespan through its control of JH titer. These data suggest that we should consider how human incretins and their analogs, which are used to treat obesity and diabetes, may impact aging.

3.
Nat Ecol Evol ; 8(6): 1140-1153, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38622362

RESUMEN

Regulation of gene expression is arguably the main mechanism underlying the phenotypic diversity of tissues within and between species. Here we assembled an extensive transcriptomic dataset covering 8 tissues across 20 bilaterian species and performed analyses using a symmetric phylogeny that allowed the combined and parallel investigation of gene expression evolution between vertebrates and insects. We specifically focused on widely conserved ancestral genes, identifying strong cores of pan-bilaterian tissue-specific genes and even larger groups that diverged to define vertebrate and insect tissues. Systematic inferences of tissue-specificity gains and losses show that nearly half of all ancestral genes have been recruited into tissue-specific transcriptomes. This occurred during both ancient and, especially, recent bilaterian evolution, with several gains being associated with the emergence of unique phenotypes (for example, novel cell types). Such pervasive evolution of tissue specificity was linked to gene duplication coupled with expression specialization of one of the copies, revealing an unappreciated prolonged effect of whole-genome duplications on recent vertebrate evolution.


Asunto(s)
Evolución Molecular , Insectos , Vertebrados , Animales , Insectos/genética , Vertebrados/genética , Especificidad de Órganos , Transcriptoma , Filogenia
4.
Elife ; 122024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38568859

RESUMEN

To gain insights into how juvenile hormone (JH) came to regulate insect metamorphosis, we studied its function in the ametabolous firebrat, Thermobia domestica. Highest levels of JH occur during late embryogenesis, with only low levels thereafter. Loss-of-function and gain-of-function experiments show that JH acts on embryonic tissues to suppress morphogenesis and cell determination and to promote their terminal differentiation. Similar embryonic actions of JH on hemimetabolous insects with short germ band embryos indicate that JH's embryonic role preceded its derived function as the postembryonic regulator of metamorphosis. The postembryonic expansion of JH function likely followed the evolution of flight. Archaic flying insects were considered to lack metamorphosis because tiny, movable wings were evident on the thoraces of young juveniles and their positive allometric growth eventually allowed them to support flight in late juveniles. Like in Thermobia, we assume that these juveniles lacked JH. However, a postembryonic reappearance of JH during wing morphogenesis in the young juvenile likely redirected wing development to make a wing pad rather than a wing. Maintenance of JH then allowed wing pad growth and its disappearance in the mature juvenile then allowed wing differentiation. Subsequent modification of JH action for hemi- and holometabolous lifestyles are discussed.


Asunto(s)
Hormonas Juveniles , Metamorfosis Biológica , Animales , Metamorfosis Biológica/fisiología , Insectos , Morfogénesis
5.
Curr Biol ; 34(3): 505-518.e6, 2024 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-38215744

RESUMEN

Germ cells are essential to sexual reproduction. Across the animal kingdom, extracellular signaling isoprenoids, such as retinoic acids (RAs) in vertebrates and juvenile hormones (JHs) in invertebrates, facilitate multiple processes in reproduction. Here we investigated the role of these potent signaling molecules in embryonic germ cell development, using JHs in Drosophila melanogaster as a model system. In contrast to their established endocrine roles during larval and adult germline development, we found that JH signaling acts locally during embryonic development. Using an in vivo biosensor, we observed active JH signaling first within and near primordial germ cells (PGCs) as they migrate to the developing gonad. Through in vivo and in vitro assays, we determined that JHs are both necessary and sufficient for PGC migration. Analysis into the mechanisms of this newly uncovered paracrine JH function revealed that PGC migration was compromised when JHs were decreased or increased, suggesting that specific titers or spatiotemporal JH dynamics are required for robust PGC colonization of the gonad. Compromised PGC migration can impair fertility and cause germ cell tumors in many species, including humans. In mammals, retinoids have many roles in development and reproduction. We found that like JHs in Drosophila, RA was sufficient to impact mouse PGC migration in vitro. Together, our study reveals a previously unanticipated role of isoprenoids as local effectors of pre-gonadal PGC development and suggests a broadly shared mechanism in PGC migration.


Asunto(s)
Drosophila melanogaster , Hormonas Juveniles , Humanos , Ratones , Animales , Células Germinativas , Drosophila , Gónadas , Terpenos , Movimiento Celular , Mamíferos
6.
BMC Genomics ; 25(1): 113, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38273232

RESUMEN

The corpora allata-corpora cardiaca (CA-CC) is an endocrine gland complex that regulates mosquito development and reproduction through the synthesis of juvenile hormone (JH). Epoxidase (Epox) is a key enzyme in the production of JH. We recently utilized CRISPR/Cas9 to establish an epoxidase-deficient (epox-/-) Aedes aegypti line. The CA from epox-/- mutants do not synthesize epoxidated JH III but methyl farneosate (MF), a weak agonist of the JH receptor, and therefore have reduced JH signalling. Illumina sequencing was used to examine the differences in gene expression between the CA-CC from wild type (WT) and epox-/- adult female mosquitoes. From 18,034 identified genes, 317 were significantly differentially expressed. These genes are involved in many biological processes, including the regulation of cell proliferation and apoptosis, energy metabolism, and nutritional uptake. In addition, the same CA-CC samples were also used to examine the microRNA (miRNA) profiles of epox-/- and WT mosquitoes. A total of 197 miRNAs were detected, 24 of which were differentially regulated in epox-/- mutants. miRNA binding sites for these particular miRNAs were identified using an in silico approach; they target a total of 101 differentially expressed genes. Our results suggest that a lack of epoxidase, besides affecting JH synthesis, results in the diminishing of JH signalling that have significant effects on Ae. aegypti CA-CC transcriptome profiles, as well as its miRNA repertoire.


Asunto(s)
Aedes , MicroARNs , Animales , Femenino , Hormonas Juveniles/metabolismo , Aedes/genética , Aedes/metabolismo , Corpora Allata/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Expresión Génica
7.
bioRxiv ; 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-37873170

RESUMEN

To gain insights into how juvenile hormone (JH) came to regulate insect metamorphosis, we studied its function in the ametabolous firebrat, Thermobia domestica. Highest levels of JH occur during late embryogenesis, with only low levels thereafter. Loss-of-function and gain-of-function experiments show that JH acts on embryonic tissues to suppress morphogenesis and cell determination and to promote their terminal differentiation. Similar embryonic actions of JH on hemimetabolous insects with short germ band embryos indicate that JH's embryonic role preceded its derived function as the postembryonic regulator of metamorphosis. The postembryonic expansion of JH function likely followed the evolution of flight. Archaic flying insects were considered to lack metamorphosis because tiny, movable wings were evident on the thoraces of young juveniles and their positive allometric growth eventually allowed them to support flight in late juveniles. Like in Thermobia, we assume that these juveniles lacked JH. However, a postembryonic reappearance of JH during wing morphogenesis in the young juvenile likely redirected wing development to make a wing pad rather than a wing. Maintenance of JH then allowed wing pad growth and its disappearance in the mature juvenile then allowed wing differentiation. Subsequent modification of JH action for hemi- and holometabolous lifestyles are discussed.

8.
Sci Rep ; 13(1): 19023, 2023 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-37923767

RESUMEN

Juvenile hormone (JH) controls the development and reproduction of insects. Therefore, a tight regulation of the expression of JH biosynthetic enzymes is critical. microRNAs (miRNAs) play significant roles in the post-transcriptional regulation of gene expression by interacting with complementary sequences in target genes. Previously, we reported that several miRNAs were differentially expressed during three developmental stages of Aedes aegypti mosquitoes with different JH levels (no JH, high JH, and low JH). One of these miRNAs was aae-miR-34-5p. In this study, we identified the presence of potential target sequences of aae-miR-34-5p in the transcripts of some genes encoding JH biosynthetic enzymes. We analysed the developmental expression patterns of aae-miR-34-5p and the predicted target genes involved in JH biogenesis. Increases in miRNA abundance were followed, with a delay, by decreases in transcript levels of target genes. Application of an inhibitor and a mimic of aae-miR-34-5p led respectively to increased and decreased levels of thiolase transcripts, which is one of the early genes of JH biosynthesis. Female adult mosquitoes injected with an aae-miR-34-5p inhibitor exhibited significantly increased transcript levels of three genes encoding JH biosynthetic enzymes, acetoacetyl-CoA thiolase (thiolase), farnesyl diphosphate phosphatase, and farnesal dehydrogenase. Overall, our results suggest a potential role of miRNAs in JH production by directly targeting genes involved in its biosynthesis.


Asunto(s)
Aedes , MicroARNs , Animales , Femenino , Hormonas Juveniles/metabolismo , Regulación de la Expresión Génica , MicroARNs/genética , MicroARNs/metabolismo
9.
PLoS Negl Trop Dis ; 17(9): e0011640, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37729234

RESUMEN

The blood-sucking hemipteran Rhodnius prolixus is one of the main vectors of Chagas disease, a neglected tropical disease that affects several million people worldwide. Consuming a blood meal and mating are events with a high epidemiological impact since after each meal, mated females can lay fertile eggs that result in hundreds of offspring. Thus, a better knowledge of the control of R. prolixus reproductive capacity may provide targets for developing novel strategies to control vector populations, thereby reducing vector-host contacts and disease transmission. Here, we have used a combination of gene transcript expression analysis, biochemical assays, hormone measurements and studies of locomotory activity to investigate how mating influences egg development and egg laying rates in R. prolixus females. The results demonstrate that a blood meal increases egg production capacity and leads to earlier egg laying in mated females compared to virgins. Virgin females, however, have increased survival rate over mated females. Circulating juvenile hormone (JH) and ecdysteroid titers are increased in mated females, a process mainly driven through an upregulation of the transcripts for their biosynthetic enzymes in the corpus allatum and ovaries, respectively. Mated females display weaker locomotory activity compared to virgin females, mainly during the photophase. In essence, this study shows how reproductive output and behaviour are profoundly influenced by mating, highlighting molecular, biochemical, endocrine and behavioral features differentially expressed in mated and virgin R. prolixus females.


Asunto(s)
Enfermedad de Chagas , Parásitos , Rhodnius , Animales , Femenino , Humanos , Rhodnius/fisiología , Reproducción , Oviposición/fisiología
10.
Development ; 150(10)2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37218457

RESUMEN

Female insects can enter reproductive diapause, a state of suspended egg development, to conserve energy under adverse environments. In many insects, including the fruit fly, Drosophila melanogaster, reproductive diapause, also frequently called reproductive dormancy, is induced under low-temperature and short-day conditions by the downregulation of juvenile hormone (JH) biosynthesis in the corpus allatum (CA). In this study, we demonstrate that neuropeptide Diuretic hormone 31 (DH31) produced by brain neurons that project into the CA plays an essential role in regulating reproductive dormancy by suppressing JH biosynthesis in adult D. melanogaster. The CA expresses the gene encoding the DH31 receptor, which is required for DH31-triggered elevation of intracellular cAMP in the CA. Knocking down Dh31 in these CA-projecting neurons or DH31 receptor in the CA suppresses the decrease of JH titer, normally observed under dormancy-inducing conditions, leading to abnormal yolk accumulation in the ovaries. Our findings provide the first molecular genetic evidence demonstrating that CA-projecting peptidergic neurons play an essential role in regulating reproductive dormancy by suppressing JH biosynthesis.


Asunto(s)
Drosophila melanogaster , Hormonas de Insectos , Animales , Femenino , Corpora Allata , Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Hormonas Juveniles , Neuronas , Hormonas de Insectos/genética , Hormonas de Insectos/fisiología , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiología , Reproducción
11.
Sci Rep ; 12(1): 20426, 2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-36443489

RESUMEN

Juvenile hormone (JH) is synthesized by the corpora allata (CA) and controls development and reproduction in insects. Therefore, achieving tissue-specific expression of transgenes in the CA would be beneficial for mosquito research and control. Different CA promoters have been used to drive transgene expression in Drosophila, but mosquito CA-specific promoters have not been identified. Using the CRISPR/Cas9 system, we integrated transgenes encoding the reporter green fluorescent protein (GFP) close to the transcription start site of juvenile hormone acid methyl transferase (JHAMT), a locus encoding a JH biosynthetic enzyme, specifically and highly expressed in the CA of Aedes aegypti mosquitoes. Transgenic individuals showed specific GFP expression in the CA but failed to reproduce the full pattern of jhamt spatiotemporal expression. In addition, we created GeneSwitch driver and responder mosquito lines expressing an inducible fluorescent marker, enabling the temporal regulation of the transgene via the presence or absence of an inducer drug. The use of the GeneSwitch system has not previously been reported in mosquitoes and provides a new inducible binary system that can control transgene expression in Aedes aegypti.


Asunto(s)
Aedes , Corpora Allata , Animales , Aedes/genética , Hormonas Juveniles , Animales Modificados Genéticamente , Drosophila , Proteínas Fluorescentes Verdes/genética , Expresión Génica
12.
Sci Rep ; 12(1): 14195, 2022 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-35988007

RESUMEN

Juvenile hormone (JH) signalling, via its receptor Methoprene-tolerant (Met), controls metamorphosis and reproduction in insects. Met belongs to a superfamily of transcription factors containing the basic Helix Loop Helix (bHLH) and Per Arnt Sim (PAS) domains. Since its discovery in 1986, Met has been characterized in several insect species. However, in spite of the importance as vectors of Chagas disease, our knowledge on the role of Met in JH signalling in Triatominae is limited. In this study, we cloned and sequenced the Dipetalogaster maxima Met transcript (DmaxMet). Molecular modelling was used to build the structure of Met and identify the JH binding site. To further understand the role of the JH receptor during oogenesis, transcript levels were evaluated in two main target organs of JH, fat body and ovary. Functional studies using Met RNAi revealed significant decreases of transcripts for vitellogenin (Vg) and lipophorin (Lp), as well as their receptors. Lp and Vg protein amounts in fat body, as well as Vg in hemolymph were also decreased, and ovarian development was impaired. Overall, these studies provide additional molecular insights on the roles of JH signalling in oogenesis in Triatominae; and therefore are relevant for the epidemiology of Chagas´ disease.


Asunto(s)
Metopreno , Triatominae , Animales , Femenino , Hormonas Juveniles/metabolismo , Metopreno/metabolismo , Oogénesis/genética , Vitelogeninas
13.
Anal Chem ; 94(16): 6139-6145, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35420029

RESUMEN

There is a need to better understand lipid metabolism during mosquito ovarian development. Lipids are the major source of energy supporting ovarian follicles development in mosquitoes. In this paper, we describe the complementary use of stable isotope labeling (SIL) and high-resolution mass spectrometry-based tools for the investigation of de novo triglycerides (TG) and diglycerides (DG) during the ovarian previtellogenic (PVG) stage (4-6 days posteclosion) of female adult Aedes aegypti. Liquid chromatography coupled to high-resolution trapped ion mobility spectrometry-parallel accumulation sequential fragmentation-time-of-flight tandem mass spectrometry (LC-TIMS-PASEF-TOF MS/MS) allowed the separation and quantification of nonlabeled and 2H/13C-labeled TG and DG species. Three SIL strategies were evaluated (H2O/2H2O with 50:50 and 95:5 mixtures, 13C-sucrose, and 13C-glucose). Results showed wide applicability with no signs of lipid ovarian impairment by SIL induced toxicity. The analytical workflow based on LC-TIMS-TOF MS/MS provided high confidence and high reproducibility for lipid DG and TG identification and SIL incorporation based on their separation by retention time (RT), collision cross section (CCS), and accurate m/z. In addition, the SIL fatty acid chain incorporation was evaluated using PASEF MS/MS. The 2H/13C incorporation into the mosquito diet provided information on how TG lipids are consumed, stored, and recycled during the PVG stage of ovarian development.


Asunto(s)
Culicidae , Diglicéridos/análisis , Espectrometría de Masas en Tándem , Animales , Cromatografía Liquida , Diglicéridos/química , Femenino , Espectrometría de Movilidad Iónica , Marcaje Isotópico , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem/métodos
14.
Insect Biochem Mol Biol ; 142: 103721, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35007710

RESUMEN

Diapause is one of the major strategies for insects to prepare for and survive harsh seasons. In females, the absence of juvenile hormone (JH) is a hallmark of adult reproductive diapause, a developmental arrest, which is much less characterized in males. Here we show that juvenile hormone III skipped bisepoxide (JHSB3) titers in hemolymph remarkably differ between reproductive males and females of the linden bug Pyrrhocoris apterus, whereas no JH was detected in diapausing adults of both sexes. Like in females, ectopic application of JH mimic effectively terminated male diapause through the canonical JH receptor components, Methoprene-tolerant and Taiman. In contrast to females, long photoperiod induced reproduction even in males with silenced JH reception or in males with removed corpus allatum (CA), the JH-producing gland. JHSB3 was detected in the accessory glands (MAG) of reproductive males, unexpectedly, even in males without CA. If there is a source of JHSB3 outside CA or a long-term storage of JHSB3 in MAGs remains to be elucidated. These sex-related idiosyncrasies are further manifested in different dynamics of diapause termination in P. apterus by low temperature. We would like to propose that this sexual dimorphism of diapause regulation might be explained by the different reproductive costs for each sex.


Asunto(s)
Diapausa de Insecto , Diapausa , Heterópteros , Animales , Corpora Allata , Femenino , Heterópteros/fisiología , Hormonas Juveniles , Masculino , Metopreno , Reproducción , Caracteres Sexuales
15.
Int J Mol Sci ; 24(1)2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36613451

RESUMEN

The rigorous balance of endocrine signals that control insect reproductive physiology is crucial for the success of egg production. Rhodnius prolixus, a blood-feeding insect and main vector of Chagas disease, has been used over the last century as a model to unravel aspects of insect metabolism and physiology. Our recent work has shown that nutrition, insulin signaling, and two main types of insect lipophilic hormones, juvenile hormone (JH) and ecdysteroids, are essential for successful reproduction in R. prolixus; however, the interplay behind these endocrine signals has not been established. We used a combination of hormone treatments, gene expression analyses, hormone measurements, and ex vivo experiments using the corpus allatum or the ovary, to investigate how the interaction of these endocrine signals might define the hormone environment for egg production. The results show that after a blood meal, circulating JH levels increase, a process mainly driven through insulin and allatoregulatory neuropeptides. In turn, JH feeds back to provide some control over its own biosynthesis by regulating the expression of critical biosynthetic enzymes in the corpus allatum. Interestingly, insulin also stimulates the synthesis and release of ecdysteroids from the ovary. This study highlights the complex network of endocrine signals that, together, coordinate a successful reproductive cycle.


Asunto(s)
Hormonas de Insectos , Rhodnius , Animales , Femenino , Hormonas Juveniles/metabolismo , Ecdisteroides/metabolismo , Rhodnius/metabolismo , Insulina/metabolismo , Hormonas de Insectos/metabolismo , Insulina Regular Humana
16.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34697248

RESUMEN

Methyl farnesoate (MF) plays hormonal regulatory roles in crustaceans. An epoxidated form of MF, known as juvenile hormone (JH), controls metamorphosis and stimulates reproduction in insects. To address the evolutionary significance of MF epoxidation, we generated mosquitoes completely lacking either of the two enzymes that catalyze the last steps of MF/JH biosynthesis and epoxidation, respectively: the JH acid methyltransferase (JHAMT) and the P450 epoxidase CYP15 (EPOX). jhamt-/- larvae lacking both MF and JH died at the onset of metamorphosis. Strikingly, epox-/- mutants, which synthesized MF but no JH, completed the entire life cycle. While epox-/- adults were fertile, the reproductive performance of both sexes was dramatically reduced. Our results suggest that although MF can substitute for the absence of JH in mosquitoes, it is with a significant fitness cost. We propose that MF can fulfill most roles of JH, but its epoxidation to JH was a key innovation providing insects with a reproductive advantage.


Asunto(s)
Aedes/genética , Evolución Molecular , Ácidos Grasos Insaturados/metabolismo , Aptitud Genética , Hormonas Juveniles/biosíntesis , Aedes/enzimología , Animales , Femenino , Masculino , Metamorfosis Biológica , Reproducción , Sesquiterpenos/metabolismo , Conducta Sexual Animal
18.
Sci Rep ; 11(1): 9636, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33953286

RESUMEN

Understanding the molecular and biochemical basis of egg development is a central topic in mosquito reproductive biology. Lipids are a major source of energy and building blocks for the developing ovarian follicles. Ultra-High Resolution Mass Spectrometry (UHRMS) combined with in vivo metabolic labeling of follicle lipids with deuterated water (2H2O) can provide unequivocal identification of de novo lipid species during ovarian development. In the present study, we followed de novo triglyceride (TG) dynamics during the ovarian previtellogenic (PVG) stage (2-7 days post-eclosion) of female adult Aedes aegypti. The incorporation of stable isotopes from the diet was evaluated using liquid chromatography (LC) in tandem with the high accuracy (< 0.3 ppm) and high mass resolution (over 1 M) of a 14.5 T Fourier Transform Ion Cyclotron Resonance Mass Spectrometer (14.5 T FT-ICR MS) equipped with hexapolar detection. LC-UHRMS provides effective lipid class separation and chemical formula identification based on the isotopic fine structure. The monitoring of stable isotope incorporation into de novo incorporated TGs suggests that ovarian lipids are consumed or recycled during the PVG stage, with variable time dynamics. These results provide further evidence of the complexity of the molecular mechanism of follicular lipid dynamics during oogenesis in mosquitoes.


Asunto(s)
Aedes/metabolismo , Ovario/metabolismo , Triglicéridos/metabolismo , Animales , Cromatografía Liquida , Femenino , Espectrometría de Masas
19.
Insect Biochem Mol Biol ; 133: 103499, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33212190

RESUMEN

Triatomines are vectors of Chagas disease and important model organisms in insect physiology. "Kissing bugs" are obligatory hematophagous insects. A blood meal is required to successfully complete oogenesis, a process primarily controlled by juvenile hormone (JH). We used Dipetalogaster maxima as an experimental model to further understand the roles of JH in the regulation of vitellogenesis and oogenesis. A particular focus was set on the role of JH controlling lipid and protein recruitment by the oocytes. The hemolymph titer of JH III skipped bisepoxide increased after a blood meal. Following a blood meal there were increased levels of mRNAs in the fat body for the yolk protein precursors, vitellogenin (Vg) and lipophorin (Lp), as well as of their protein products in the hemolymph; mRNAs of the Vg and Lp receptors (VgR and LpR) were concomitantly up-regulated in the ovaries. Topical administration of JH induced the expression of Lp/LpR and Vg/VgR genes, and prompted the uptake of Lp and Vg in pre-vitellogenic females. Knockdown of the expression of LpR by RNA interference in fed females did not impair the Lp-mediated lipid transfer to oocytes, suggesting that the bulk of lipid acquisition by oocytes occurred by other pathways rather than by the endocytic Lp/LpR pathway. In conclusion, our results strongly suggest that JH signaling is critical for lipid storage in oocytes, by regulating Vg and Lp gene expression in the fat body as well as by modulating the expression of LpR and VgR genes in ovaries.


Asunto(s)
Hormonas Juveniles/metabolismo , Metabolismo de los Lípidos , Oogénesis/fisiología , Triatominae , Vitelogénesis/fisiología , Animales , Femenino , Proteínas de Insectos/metabolismo , Insectos/metabolismo , Insectos/fisiología , Lipoproteínas/metabolismo , Oocitos/metabolismo , Ovario/metabolismo , Interferencia de ARN , Receptores Citoplasmáticos y Nucleares/metabolismo , Transducción de Señal , Triatominae/metabolismo , Triatominae/fisiología , Vitelogeninas/metabolismo
20.
Insects ; 11(12)2020 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-33287115

RESUMEN

The juvenile hormones (JHs) are a group of sesquiterpenoids synthesized by the corpora allata. They play critical roles during insect development and reproduction. To study processes that are controlled by JH, researchers need methods to identify and quantify endogenous JHs and tools that can be used to increase or decrease JH titers in vitro and in vivo. The lipophilic nature of JHs, coupled with the low endogenous titers, make handling and quantification challenging. JH titers in insects can easily be increased by the topical application of JH analogs, such as methoprene. On the other hand, experimentally reducing JH titers has been more difficult. New approaches to modulate JH homeostasis have been established based on advances in RNA interference and CRISPR/Cas9-based genome editing. This review will summarize current advances in: (1) the detection and quantification of JHs from insect samples; (2) approaches to manipulating JH titers; and (3) next-generation tools to modulate JH homeostasis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA