Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Asunto principal
Intervalo de año de publicación
1.
Small Methods ; : e2401141, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39149767

RESUMEN

Passive radiative cooling represents a transformative approach to achieving sustainable cooling on Earth without relying on energy consumption. In this research, the optical characteristics of five readily accessible metal-organic frameworks (MOFs): ZIF-67(Co), MOF-74(Ni), HKUST-1(Cu), MOF-801(Zr), and UiO-66(Zr) are meticulously explored. The objective is to identify the pivotal factors that influence their ability to facilitate radiative cooling. Through an in-depth analysis encompassing spectroscopic features, surface texture, and porosity, it is found that the MOFs' cooling efficacy is largely influenced by their optical bandgaps and functional groups, although other factors like chemical composition and structural characteristics remain to be considered. Notably, UiO-66(Zr) emerged as the standout performer, boasting an impressive solar reflectance of 91% and a mid-infrared emissivity of 96.8%. Remarkably, a fabric treated with UiO-66(Zr) achieved a substantial sub-ambient cooling effect, lowering temperatures by up to 5 °C and delivering a cooling power of 26 W m-2 at 300 K. The findings underscore the vast potential of MOFs in offering new opportunities to advance passive radiative cooling technologies, paving the way for their extensive application in this field.

2.
Small ; 17(29): e2100670, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34145746

RESUMEN

Pseudocapacitive materials encapsulated in conductive carbon matrix are of paramount importance to develop energy storage devices with high performance and long lifespan. Here, via simple laser-scribing, the Mn-based metal-organic framework [EG-MOF-74(Mn)] is transformed into pseudocapacitive hybrid MnO/Mn7 C3 encapsulated in highly conductive graphitic carbon. It is revealed that the rapid carbothermic reduction of MnO (C + MnO → C' + Mn7 C3 + CO) leads to the formation of the intermediate pseudocapacitive MnO/Mn7 C3 and the concurrent catalytic graphitization of disordered carbon. This reaction produces a new type of pseudocapacitive material in the form of MnO/Mn7 C3 fully embedded in highly conductive graphitic carbon. Thanks to the synergistic effect of the MnO/Mn7 C3 nanoparticles and the graphitic carbon, the composite exhibits a high specific capacitance of 403 F g-1 with excellent stability. Asymmetric coin-cell supercapacitors based on the composite demonstrate high energy (29.2 Wh kg-1 ) and power densities (8000 W kg-1 ) with a long lifespan. Prototypes of flexible paper-based supercapacitors made of the composite also show great potential toward applications of flexible electronics.


Asunto(s)
Grafito , Carbono , Capacidad Eléctrica , Electrodos , Rayos Láser
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA