Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Sci Adv ; 10(3): eadj5991, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38241378

RESUMEN

Ancient bony fishes had heterocercal tails, like modern sharks and sturgeons, with asymmetric caudal fins and a vertebral column extending into an elongated upper lobe. Teleost fishes, in contrast, developed a homocercal tail characterized by two separate equal-sized fin lobes and the body axis not extending into the caudal fin. A similar heterocercal-to-homocercal transition occurs during teleost ontogeny, although the underlying genetic and developmental mechanisms for either transition remain unresolved. Here, we investigated the role of hox13 genes in caudal fin formation as these genes control posterior identity in animals. Analysis of expression profiles of zebrafish hox13 paralogs and phenotypes of CRISPR/Cas9-induced mutants showed that double hoxb13a and hoxc13a mutants fail to form a caudal fin. Furthermore, single mutants display heterocercal-like morphologies not seen since Mesozoic fossil teleosteomorphs. Relaxation of functional constraints after the teleost genome duplication may have allowed hox13 duplicates to neo- or subfunctionalize, ultimately contributing to the evolution of a homocercal tail in teleost fishes.


Asunto(s)
Evolución Biológica , Pez Cebra , Animales , Pez Cebra/genética , Genes Homeobox , Aletas de Animales , Columna Vertebral
2.
Biology (Basel) ; 12(6)2023 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-37372102

RESUMEN

Existing drug treatment against tuberculosis is no match against the increasing number of multi-drug resistant strains of its causative agent, Mycobacterium tuberculosis (Mtb). A better understanding of how mycobacteria subvert the host immune defenses is crucial for developing novel therapeutic strategies. A potential approach is enhancing the activity of the autophagy machinery, which can direct bacteria to autophagolysosomal degradation. However, the interplay specifics between mycobacteria and the autophagy machinery must be better understood. Here, we analyzed live imaging data from the zebrafish model of tuberculosis to characterize mycobacteria-autophagy interactions during the early stages of infection in vivo. For high-resolution imaging, we microinjected fluorescent Mycobacterium marinum (Mm) into the tail fin tissue of zebrafish larvae carrying the GFP-LC3 autophagy reporter. We detected phagocytosed Mm clusters and LC3-positive Mm-containing vesicles within the first hour of infection. LC3 associations with these vesicles were transient and heterogeneous, ranging from simple vesicles to complex compound structures, dynamically changing shape by fusions between Mm-containing and empty vesicles. LC3-Mm-vesicles could adopt elongated shapes during cell migration or alternate between spacious and compact morphologies. LC3-Mm-vesicles were also observed in cells reverse migrating from the infection site, indicating that the autophagy machinery fails to control infection before tissue dissemination.

3.
Cells ; 9(11)2020 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-33138004

RESUMEN

Modeling human infectious diseases using the early life stages of zebrafish provides unprecedented opportunities for visualizing and studying the interaction between pathogens and phagocytic cells of the innate immune system. Intracellular pathogens use phagocytes or other host cells, like gut epithelial cells, as a replication niche. The intracellular growth of these pathogens can be counteracted by host defense mechanisms that rely on the autophagy machinery. In recent years, zebrafish embryo infection models have provided in vivo evidence for the significance of the autophagic defenses and these models are now being used to explore autophagy as a therapeutic target. In line with studies in mammalian models, research in zebrafish has shown that selective autophagy mediated by ubiquitin receptors, such as p62, is important for host resistance against several bacterial pathogens, including Shigella flexneri, Mycobacterium marinum, and Staphylococcus aureus. Furthermore, an autophagy related process, Lc3-associated phagocytosis (LAP), proved host beneficial in the case of Salmonella Typhimurium infection but host detrimental in the case of S. aureus infection, where LAP delivers the pathogen to a replication niche. These studies provide valuable information for developing novel therapeutic strategies aimed at directing the autophagy machinery towards bacterial degradation.


Asunto(s)
Autofagia , Infecciones Bacterianas/metabolismo , Infecciones Bacterianas/patología , Proteínas Asociadas a Microtúbulos/metabolismo , Fagocitosis , Proteínas de Pez Cebra/metabolismo , Animales , Bacterias/metabolismo , Infecciones Bacterianas/microbiología , Modelos Animales de Enfermedad , Humanos
4.
Immunogenetics ; 69(5): 341-349, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28220184

RESUMEN

Neutrophils are a major component of the innate immune response and the most abundant circulating cell type in humans and zebrafish. The CXCL12/CXCR4 ligand receptor pair plays a key role in neutrophil homeostasis, controlling definitive hematopoiesis and neutrophil release into circulation. Neutrophils overexpressing CXCR4 respond by migrating towards sources of CXCL12, which is abundant in hematopoietic tissues. However, the physiological role of CXCL12/CXCR4 signaling during inflammatory responses remains unknown. Here, we show that zebrafish mutants lacking functional CXCL12a or CXCR4b show disrupted granulopoiesis in the kidney and increased number of circulating neutrophils. Additionally, CXCL12a and CXCR4b mutants display exacerbated recruitment of neutrophils to wounds and not to infections, and migrating neutrophils to wounds show increased directionality. Our results show that CXCL12a/CXCR4b signaling antagonizes wound-induced inflammatory signals by retaining neutrophils in hematopoietic tissues as a part of a balance between both inflammatory and anti-inflammatory cues, whose dynamic levels control neutrophils complex migratory behavior.


Asunto(s)
Quimiocina CXCL12/inmunología , Hematopoyesis/inmunología , Neutrófilos/inmunología , Receptores CXCR4/inmunología , Proteínas de Pez Cebra/inmunología , Pez Cebra/inmunología , Animales , Animales Modificados Genéticamente , Células Cultivadas , Embrión no Mamífero/citología , Embrión no Mamífero/inmunología , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica , Inflamación , Larva/inmunología , Larva/metabolismo , Neutrófilos/metabolismo , Neutrófilos/patología , Pez Cebra/metabolismo
5.
J Cell Biochem ; 117(8): 1880-9, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26755079

RESUMEN

In vertebrates, damage to mechanosensory hair cells elicits an inflammatory response, including rapid recruitment of macrophages and neutrophils. While hair cells in amniotes usually become permanently lost, they readily regenerate in lower vertebrates such as fish. Damage to hair cells of the fish lateral line is followed by inflammation and rapid regeneration; however the role of immune cells in this process remains unknown. Here, we show that recruited macrophages are required for normal regeneration of lateral line hair cells after copper damage. We found that genetic ablation or local ablation using clodronate liposomes of macrophages recruited to the site of injury, significantly delays hair cell regeneration. Neutrophils, on the other hand, are not needed for this process. We anticipate our results to be a starting point for a more detailed description of extrinsic signals important for regeneration of mechanosensory cells in vertebrates. J. Cell. Biochem. 117: 1880-1889, 2016. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Estructuras Animales/fisiología , Cobre/toxicidad , Macrófagos/inmunología , Mecanotransducción Celular/inmunología , Neuronas Aferentes/inmunología , Regeneración/inmunología , Pez Cebra/inmunología , Animales , Neutrófilos/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA