RESUMEN
Staphylococcus aureus is a pathogen widely involved in wound infection due to its ability to release several virulence factors that impair the skin healing process, as well as its mechanism of drug resistance. Herein, sodium alginate and chitosan were combined to produce a hydrogel for topical delivery of neomycin to combat S. aureus associated with skin complications. The hydrogel was formulated by combining sodium alginate (50 mg/mL) and chitosan (50 mg/mL) solutions in a ratio of 9:1 (HBase). Neomycin was added to HBase to achieve a concentration of 0.4 mg/mL (HNeo). The incorporation of neomycin into the product was confirmed by scanning electron microscopy, FTIR and TGA analysis. The hydrogels produced are homogeneous, have a high swelling capacity, and show biocompatibility using erythrocytes and fibroblasts as models. The formulations showed physicochemical and pharmacological stability for 60 days at 4 ± 2 °C. HNeo totally inhibited the growth of S. aureus after 4 h. The antimicrobial effects were confirmed using ex vivo (porcine skin) and in vivo (murine) wound infection models. Furthermore, the HNeo-treated mice showed lower severity scores than those treated with HBase. Taken together, the obtained results present a new low-cost bioproduct with promising applications in treating infected wounds.
Asunto(s)
Alginatos , Antibacterianos , Quitosano , Hidrogeles , Neomicina , Staphylococcus aureus , Quitosano/química , Quitosano/farmacología , Alginatos/química , Alginatos/farmacología , Hidrogeles/química , Hidrogeles/farmacología , Staphylococcus aureus/efectos de los fármacos , Animales , Ratones , Neomicina/farmacología , Neomicina/química , Neomicina/administración & dosificación , Antibacterianos/farmacología , Antibacterianos/química , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Cutáneas Estafilocócicas/tratamiento farmacológico , Infecciones Cutáneas Estafilocócicas/microbiología , Infecciones Cutáneas Estafilocócicas/patología , Portadores de Fármacos/química , Piel/efectos de los fármacos , Piel/microbiologíaRESUMEN
This study aimed to evaluate the potential of lactic acid bacteria (LAB) in developing alginate-based gel formulations to inhibit Staphylococcus aureus. Initially, the antagonistic actions of three lactic acid bacteria (LAB) (Lacticaseibacillus rhamnosus ATCC 10863, Lactiplantibacillus plantarum ATCC 14917, Limosilactobacillus fermentum ATCC 23271) were evaluated against S. aureus ATCC 25923. All tested LAB inhibited S. aureus, but the highest activity was observed for L. plantarum ATCC 14917 (p < 0.05). The antimicrobial effects of L. plantarum ATCC 14917 cell suspensions, sonicate cells extract, and cell-free supernatants (pH 5 or 7) were analyzed using a broth-based assay. The cell suspensions inhibited S. aureus at concentrations ≥ 10%, and these effects were confirmed by a time-kill assay. Alginate-based gels were formulated with cell suspensions, sonicate cells extract, and cell-free supernatant (pH 5). These formulations inhibited S. aureus growth. Based on the results, the alginate gel with cell suspensions at 10% was selected for further characterization. L. plantarum ATCC 14917 survived in the alginate-based gel, especially when stored at 5 °C. At this temperature, the L. plantarum-containing alginate gel was stable, and it was in compliance with microbiological standards. These findings suggest it can be a promising agent for the topical treatment of infections induced by S. aureus.
RESUMEN
This study aimed to develop a hydroxyethyl cellulose-based topical formulation containing probiotics and to evaluate its antimicrobial action using in vivo and ex vivo models. Initially, the antagonistic effects of Lacticaseibacillus rhamnosus ATCC 10863, Limosilactobacillus fermentum ATCC 23271, Lactiplantibacillus plantarum ATCC 8014 and Lactiplantibacillus plantarum LP-G18-A11 were analyzed against Enterococcus faecalis ATCC 29212, Klebsiella pneumoniae ATCC 700603, Staphylococcus aureus ATCC 27853 and Pseudomonas aeruginosa ATCC 2785. The best action was seen for L. plantarum LP-G18-A11, which presented high inhibition against S. aureus and P. aeruginosa. Then, lactobacilli strains were incorporated into hydroxyethyl cellulose-based gels (natrosol); however, only the LP-G18-A11-incorporated gels (5% and 3%) showed antimicrobial effects. The LP-G18-A11 gel (5%) maintained its antimicrobial effects and viability up to 14 and 90 days at 25 °C and 4 °C, respectively. In the ex vivo assay using porcine skin, the LP-G18-A11 gel (5%) significantly reduced the skin loads of S. aureus and P. aeruginosa after 24 h, while only P. aeruginosa was reduced after 72 h. Moreover, the LP-G18-A11 gel (5%) showed stability in the preliminary and accelerated assays. Taken together, the results show the antimicrobial potential of L. plantarum LP-G18-A11, which may be applied in the development of new dressings for the treatment of infected wounds.
RESUMEN
In folk medicine, Vismia guianensis is used to treat skin diseases and mycoses in the Amazon region. We evaluated the anti-Candida activity of the hydroalcoholic extract from the leaves of Vismia guianensis (EHVG). HPLC-PDA and FIA-ESI-IT-MSn were used to chemically characterize EHVG. The anti-Candida activity was determined in vitro by the minimum inhibitory concentrations (MIC) against Candida glabrata (ATCC-2001); Candida albicans (ATCC-90028, ATCC-14053, and ATCC-SC5314), and C. albicans clinical isolates. EHVG effects on adhesion, growth, and biofilm formation were also determined. Molecular docking was used to predict targets for EHVG compounds. The main compounds identified included anthraquinone, vismione D, kaempferol, quercetin, and vitexin. EHVG was fungicidal against all tested strains. C. albicans ATCC 14053 and C. glabrata ATCC 2001 were the most sensitive strains, as the extract inhibited their virulence factors. In silico analysis indicated that vismione D presented the best antifungal activity, since it was the most effective in inhibiting CaCYP51, and may act as anti-inflammatory and antioxidant agent, according to the online PASS prediction. Overall, the data demonstrate that EHVG has an anti-Candida effect by inhibiting virulence factors of the fungi. This activity may be related to its vismione D content, indicating this compound may represent a new perspective for treating diseases caused by Candida sp.
RESUMEN
Oropharyngeal candidiasis/candidosis is a common and recurrent opportunistic fungal infection. Fluconazole (FLZ), one of the most used and effective antifungal agents, has been associated with a rise of resistant Candida species in immunocompromised patients undergoing prophylactic therapy. Sulforaphane (SFN), a compound from cruciferous vegetables, is an antimicrobial with yet controversial activities and mechanisms on fungi. Herein, the in silico and antifungal activities of SFN against C. albicans were investigated. In silico analyzes for the prediction of the biological activities and oral bioavailability of SFN, its possible toxicity and pharmacokinetic parameters, as well as the estimates of its gastrointestinal absorption, permeability to the blood-brain barrier and skin, and similarities to drugs, were performed by using different software. SFN in vitro anti-Candida activities alone and in combination with fluconazole (FLZ) were determined by the broth microdilution method and the checkerboard, biofilm and hyphae formation tests. Amongst the identified probable biological activities of SFN, nine indicated an antimicrobial potential. SFN was predicted to be highly absorbable by the gastrointestinal tract, to present good oral availability, and not to be irritant and/or hepatotoxic. SFN presented antifungal activity against C. albicans and prevented both biofilm and hyphae formation by this microorganism. SFN was additive/synergistic to FLZ. Overall, the data highlights the anti-Candida activity of SFN and its potential to be used as an adjuvant therapy to FLZ in clinical settings.
RESUMEN
Candida albicans is a human pathogen that is part of the healthy microbiome. However, it is often associated with opportunistic fungal infections. The treatment of these infections is challenging because prolonged exposure to antifungal drugs can culminate in fungal resistance during therapy, and there is a limited number of available drugs. Therefore, this study investigated the antifungal activity of ononin by in silico and in vitro assays, and in Tenebrio molitor as an alternative in vivo model of infection caused by C. albicans. Ononin is an isoflavone glycoside derived from formononetin that has various biological activities. According in silico evaluation, ononin showed the best electron affinity in molecular docking with CaCYP51, with a binding free energy of -10.89 kcal/mol, superior to that of the antifungal drugs fluconazole and posaconazole. The ononin + CaCYP51 complex formed hydrogen bonds with Tyr132, Ser378, Phe380, and Met508, as well as hydrophobic connections with Tyr118, Leu121, Phe126, Leu131, Ile304, and Leu309, and interactions with the heme group. Ononin exerted anti-Candida albicans activity, with MIC between 3.9 and 7.8 µg/mL, and inhibited young and mature biofilms, with a reduction in cell density and metabolic activity of 50 to 80%. The compound was not cytotoxic to sheep red blood cells at concentrations up to 1000 µg/mL. Larvae of the mealworm T. molitor were used as an alternative in vivo model of C. albicans infection. Ononin was able to prolong larval survival at concentrations of 0.5, 1, and 5 mg/kg, and was not toxic up to a concentration of 20 mg/kg. Moreover, ononin reduced the fungal charge in treated animals. In conclusion, our results suggest that ononin has anti-Candida albicans activity and is a potential candidate for the development of new therapeutic alternatives.
RESUMEN
This study aimed to compare muscle strength and power indicators according to bioimpedance spectroscopy's phase angle (PhA) values, in resistance-trained (RT) men, while exploring associations between PhA and performance. Forty-four men aged 18−45 years, engaged in RT, were allocated according to PhA tertiles. Lean soft tissue (LST) and fat mass (%FM) were assessed using dual-energy x-ray absorptiometry; dynamic muscle strength using 1 repetition maximum (1RM) of bench press (BP) and back squat (BS) and muscle power using Wingate test (WT) and countermovement jump (CMJ). For WT and CMJ, the 3rd tertile was significantly higher than the 1st tertile (p = 0.027 and p = 0.018, respectively). Regarding BP 1RM, the 3rd tertile was significantly higher than the 2nd tertile (p = 0.037). LST better explained the variability in the WT, BS and BP (p =< 0.001), while %FM better accounted for jump height in CMJ (p =< 0.001). PhA was a predictor of performance in both CMJ (p = 0.040) and BP (p = 0.012), independently of LST and %FM. Participants with higher PhA also displayed superior muscle strength of the upper limbs and greater muscle power of the lower limbs. PhA displayed significant moderate associations with performance in CMJ and BP, even after controlling for body composition. Still, LST was the most important predictor of muscle strength and power.
RESUMEN
Failures in endodontic treatments are mostly associated with the difficulty in eradicating microbes of the root canal system, highlighting the need to develop novel effective antimicrobials. Punica granatum (pomegranate) leaf hydroalcoholic extract may be a potential alternative in canal dressing, owing to its antimicrobial properties. The objective of this study was to evaluate the antimicrobial activity of hydroalcoholic leaf extract of Punica granatum (HEPg) alone or in combination with calcium hydroxide (Ca(OH)2) against Enterococcus faecalis and Candida albicans in isolation and in mono- and polymicrobial biofilms. Microdilution tests in broth and assays for inhibition of biofilm formation were carried out to evaluate the antimicrobial properties of HEPg and HEPg + Ca(OH)2 against Enterococcus faecalis and Candida albicans. The cytotoxicity of HEPg in HaCaT cells was evaluated by MTT assay. HEPg and HEPg + Ca(OH)2 exerted significant antimicrobial activity against planktonic cells and mono- and polymicrobial biofilms. The combination of Punica granatum extract with Ca(OH)2 appears to be a promising alternative in endodontic treatments, which could be tested in vivo to confirm the efficacy of this mixture in disinfecting root canal systems.
RESUMEN
Candidiasis is the most common fungal infection among immunocompromised patients. Its treatment includes the use of antifungals, which poses limitations such as toxicity and fungal resistance. Plant-derived extracts, such as Punica granatum, have been reported to have antimicrobial activity, but their antifungal effects are still unknown. We aimed to evaluate the antifungal and antiviral potential of the ethyl acetate fraction of P. granatum (PgEA) and its isolated compound galloyl-hexahydroxydiphenoyl-glucose (G-HHDP-G) against Candida spp. In silico analyses predicted the biological activity of G-HHDP-G. The minimum inhibitory concentrations (MIC) of PgEA and G-HHDP-G, and their effects on biofilm formation, preformed biofilms, and phospholipase production were determined. In silico analysis showed that G-HHDP-G has antifungal and hepatoprotective effects. An in vitro assay confirmed the antifungal effects of PgEA and G-HHDP-G, with MIC in the ranges of 31.25-250 µg/mL and 31.25 ≥ 500 µg/mL, respectively. G-HHDP-G and PgEA synergistically worked with fluconazole against planktonic cells. The substances showed antibiofilm action, alone or in combination with fluconazole, and interfered with phospholipase production. The antifungal and antibiofilm actions of PgEA and G-HHDP-G, alone or in combination with fluconazole, in addition to their effects on reducing Candida phospholipase production, identify them as promising candidates for therapeutics.
RESUMEN
Vulvovaginal candidiasis is a common fungal infection in women. In this study, Platonia insignis hydroalcoholic extract (PiHE) and its fractions were evaluated for antifungal and antivirulence activities against vaginal Candida species. Dichloromethane (DCMF) and ethyl acetate fractions (EAF) obtained from PiHE effectively inhibited the pathogen. Electrospray ionization mass spectrometry was used for identifying the main compounds in extracts. Minimal inhibitory and fungicidal concentrations (MIC and MFC, respectively) were determined by a broth microdilution assay. Furthermore, we evaluated the effect of the extract and fractions on the virulence properties of Candida albicans, and their cytotoxicity effect was determined on RAW 264.7 cells. Compounds found in extracts were flavonoid glycosides, mainly derivatives of quercetin and myricetin. Extracts showed antifungal potential, with the lowest MIC value for EAF (1.3 mg/mL) and inhibited Candida adherence and biofilm formation. EAF disrupted 48 h biofilms with an inhibition rate of more than 90%. The extract and its fractions exhibited no cytotoxicity. The antifungal effects were attributed to the ability of these extracts to alter the mitochondrial membrane potential for the release of pro-apoptotic factors in the cytosol. In conclusion, our data suggest that PiHE and EAF could act as novel candidates for the development of new therapeutic treatments against fungal infections.
RESUMEN
Cryptococcosis, caused by yeasts of the genus Cryptococcus, is an infectious disease with a worldwide distribution. Cryptococcus neoformans and Cryptococcus gattii are the species that commonly cause this disease in humans; however, infections caused by Cryptococcus laurentii, especially in immunocompromised patients, are increasingly being reported. Owing to the increase in the resistance of fungi to antifungals, and a lack of treatment options, it is important to seek new therapeutic alternatives such as natural products. Among these are plant species such as Punica granatum, which is used in folk medicine to treat various diseases. This study aimed to evaluate the activity of the acetate fraction of P. granatum leaf extract against environmental and clinical isolates of Cryptococcus. Three environmental isolates of C. laurentii, PMN, PMA, and PJL II, isolated from soils of different municipalities in the state of Maranhão, a clinical isolate, C. gattii, from a patient with neurocryptococcosis, and a standard strain of C. gattii (ATCC 32068) were used. The minimum and fractional inhibitory concentrations (MIC and FIC, respectively) and time-kill curve of the extract and fluconazole were determined to assess the susceptibility profile of the fungal isolates. Larvae of Tenebrio molitor were infected with Cryptococcus strains, and the effects of acetate fraction of P. granatum extract and fluconazole on the survival and fungal burden were determined. The extract activity was tested against pre-formed biofilms. The acetate fraction of P. granatum extract showed promising antifungal activity against all the species of Cryptococcus evaluated in this study, with an MIC value lower than that of fluconazole. The indices obtained in the FIC test indicated that the antimicrobial effect of the combination of the extract and antifungal was indifferent for 80% of the isolates. The P. granatum acetate fraction reduced the pre-formed biofilm of some isolates, showing better activity than fluconazole, which is consistent with results from fluorescence microscopy. This is the first study on the use of P. granatum and its ability to inhibit Cryptococcus biofilms; therefore, further studies and tests are needed to investigate the components and mechanism of action of P. granatum against cryptococcosis agents.
RESUMEN
Candida yeasts are generally found in the vaginal microbiota; however, disruption of the balance maintained by host factors and microorganisms results in vulvovaginal candidiasis (VVC). This study evaluated the antagonistic activity of vaginal Lactobacillus spp. on Candida albicans to verify whether active compounds of Lactobacillus spp. had antifungal and antivirulence activity. The antagonism assay showed that 15 out of 20 Lactobacillus strains had an inhibitory effect on C. albicans. Biosurfactants displayed surface-tension-reducing activity, with the best value obtained for Lactobacillus gasseri 1. Lactobacillus rhamnosus ATCC 9595, Lactobacillus acidophilus ATCC 4356, and Lactobacillus paracasei 11 produced biosurfactants that decreased C. albicans adhesion and disrupted biofilm formation. The best results were obtained in the pre-incubation assay for L. gasseri 1 and L. paracasei 11. Overall, Lactobacillus strains showed significant anti-Candida activity, and their biosurfactants exhibited considerable anti-adhesion and antibiofilm activity against C. albicans. To be considered safe for use in vivo, the safety of biosurfactant (BS) should be investigated using cytotoxicity assays.
RESUMEN
This study aimed to investigate the effect of the n-butanol fraction of Terminalia catappa Linn., (FBuTC) on biofilm of Candida albicans and Candida glabrata, as well as changes in color and roughness of polymethyl methacrylate resin (PMMA). The susceptibility of C. albicans and C. glabrata to FBuTC was evaluated by means of the Minimum Inhibitory and Minimum Fungicidal Concentration (MIC and MFC). PMMA acrylic resin discs (N= 108) were fabricated. For the susceptibility tests, biofilms of C. albicans and C. glabrata were developed on discs for 48 h and immersed in phosphate-saline buffer solution (PBS), 1% sodium hypochlorite (SH 1%), or FBuTC at MIC, 5xMIC, or 10xMIC. For the color and roughness change tests, the discs were immersed in distilled water, SH 1%, or FBuTC in the concentrations of 0.25 mg/mL, 2.5 mg/mL, or 25.0 mg/mL. After 28 days of incubation, color change was evaluated by spectrophotometry and roughness, by using a profilometer. The biofilms were investigated by one-way ANOVA and, the color and roughness changes (two-way ANOVA and the Tukey test; α=0.05). For both MIC and MFC the value of 0.25 mg/mL of FBuTC was observed for the planktonic cells of C. albicans and C. glabrata. Exposure to FBuTC at 10xMIC had a significant effect on the biofilm of C. albicans, showing a reduction in cell counts when compared with PBS, (p=0.001). For the biofilm of C. glabrata, the MIC was sufficient for significantly reducing the cell count (p<0.001). No important changes in color and roughness of the acrylic resin were observed, even after 28 days, irrespective of the concentration of FBuTC used (p >0.05). It could be concluded that the immersion of acrylic resin for dental prosthesis in FBuTC was effective in reducing the biofilms of C. albicans and C. glabrata without evidence of change in roughness and color of this substrate.
RESUMEN
Cutaneous fungal infections include onychomycosis, an infection of the nail that affects both healthy and immunocompromised patients. This study investigated the in vitro hydrolytic enzymes production, adhesion and biofilm formation capacity of Candida parapsilosis complex species and Kodamaea ohmeri isolates from onychomycoses of HIV/AIDS patients and also established the antifungal sensitivity profiles of these isolates. Onychomycosis in HIV/AIDS patients showed a high prevalence of emerging yeasts, among which C. parapsilosis complex species and K. ohmeri were the most frequent. Three C. parapsilosis sensu stricto and two C. orthopsilosis isolates were resistant to amphotericin B and 83% of isolates were resistant to terbinafine. All three different species evaluated were proteinase and hemolysin producers. All isolates adhered to stainless steel and siliconized latex surfaces, and carbohydrates intensified adhesion of all isolates. Isolates adhered to keratinous nail and 50% formed biofilms with strong intensity. In multispecies or polymicrobial biofilms, C. albicans and Staphylococcus aureus regulated the biofilm formation of the analyzed species, decreasing the number of their cells in biofilms. The isolation of emerging yeast species from onychomycosis which are great producers of hydrolytic enzymes and with high adhesion and biofilm formation capacity is a result that should be considered relevant in clinical practice. In addition, half of the isolates was resistant to at least one of the tested antifungals. Taken together these data corroborate the infectious capacity and viability of these isolates under favorable conditions.
Asunto(s)
Síndrome de Inmunodeficiencia Adquirida/complicaciones , Candida parapsilosis/aislamiento & purificación , Onicomicosis/microbiología , Saccharomycetales/aislamiento & purificación , Adulto , Anfotericina B/farmacología , Antifúngicos/farmacología , Biopelículas/crecimiento & desarrollo , Candida parapsilosis/efectos de los fármacos , ADN de Hongos , Farmacorresistencia Fúngica , Femenino , VIH , Humanos , Látex , Masculino , Pruebas de Sensibilidad Microbiana , Persona de Mediana Edad , Onicomicosis/epidemiología , Saccharomycetales/efectos de los fármacos , Acero Inoxidable , Terbinafina/farmacología , Virulencia , Adulto JovenRESUMEN
Climate can modulate human health at large spatial scales, but the influence of global, regional, and local environments remains poorly understood, especially for neglected diseases, such as mycoses. In this work, we present the correlation between climatic variables and hospitalizations for mycoses in Brazilian state capitals, evaluating the period of 2008 to 2016 at different time scales. The results indicate that climate modulates the hospitalizations for mycoses differently at annual and monthly time scales, with minimum temperature as a key climatic variable during periods of high prevalence in the 10 Brazilian capitals with the highest hospitalizations for mycoses rates. The greatest number of hospitalizations coincided with La Niña events, while a reduction was observed during El Niño events, thereby demonstrating the influence of the Pacific Interdecadal Climate Oscillation on the prevalence of mycoses in Brazil. At a regional scale, the mycoses burden in Brazil appears to respond differently to local and global climatic drivers.
Asunto(s)
Clima , Hospitalización/estadística & datos numéricos , Micosis , Brasil , Humanos , Factores de TiempoRESUMEN
The occurrence of damage on bacterial DNA (mediated by antibiotics, for example) is intimately associated with the activation of the SOS system. This pathway is related to the development of mutations that might result in the acquisition and spread of resistance and virulence factors. The inhibition of the SOS response has been highlighted as an emerging resource, in order to reduce the emergence of drug resistance and tolerance. Herein, we evaluated the ability of betulinic acid (BA), a plant-derived triterpenoid, to reduce the activation of the SOS response and its associated phenotypic alterations, induced by ciprofloxacin in Staphylococcus aureus. BA did not show antimicrobial activity against S. aureus (MIC > 5000 µg/mL), however, it (at 100 and 200 µg/mL) was able to reduce the expression of recA induced by ciprofloxacin. This effect was accompanied by an enhancement of the ciprofloxacin antimicrobial action and reduction of S. aureus cell volume (as seen by flow cytometry and fluorescence microscopy). BA could also increase the hyperpolarization of the S. aureus membrane, related to the ciprofloxacin action. Furthermore, BA inhibited the progress of tolerance and the mutagenesis induced by this drug. Taken together, these findings indicate that the betulinic acid is a promising lead molecule in the development helper drugs. These compounds may be able to reduce the S. aureus mutagenicity associated with antibiotic therapies.
Asunto(s)
Farmacorresistencia Bacteriana/efectos de los fármacos , Rec A Recombinasas/genética , Staphylococcus aureus/genética , Triterpenos/farmacología , Ciprofloxacina/efectos adversos , Ciprofloxacina/farmacología , ADN Bacteriano/efectos de los fármacos , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Humanos , Mutagénesis/efectos de los fármacos , Mutagénesis/genética , Triterpenos Pentacíclicos , Respuesta SOS en Genética/efectos de los fármacos , Respuesta SOS en Genética/genética , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/patogenicidad , Factores de Virulencia/genética , Ácido BetulínicoRESUMEN
Hydrogen peroxide (H2O2)-based products are effective in tooth whitening; however, their safety is controversial as they may harm patient tissues/cells. These effects are suggested to be concentration-dependent; nonetheless, to date, there are no reports on H2O2-mediated oxidative damage in the gingival tissue, and neither whether this can be detected in gingival crevicular fluid (GCF) samples. We hypothesize that H2O2 whitening products may cause collateral oxidative tissue damage following in office application. Therefore, H2O2 and nitric oxide (NO) levels were investigated in GCF samples obtained from patients undergoing dental bleaching with H2O2 at different concentrations, in a randomized, double-blind, split-mouth clinical trial. A proteomic analysis of these samples was also performed. H2O2-based whitening products promoted inflammation which was detected in GCF samples and lasted for longer following 35% H2O2 bleaching. This included time-dependent changes in NO levels and in the abundance of proteins associated with NO synthesis, oxidative stress, neutrophil regulation, nucleic acid damage, cell survival and/or tissue regeneration. Overall, H2O2-based products used in office promote inflammation irrespective of their concentration. As the inflammation caused by 35% H2O2 is longer, patients may benefit better from using lower concentrations of this bleaching product, as they may result in less tissue damage.
Asunto(s)
Líquido del Surco Gingival/metabolismo , Peróxido de Hidrógeno/metabolismo , Peróxido de Hidrógeno/farmacología , Blanqueadores Dentales/metabolismo , Blanqueadores Dentales/farmacología , Relación Dosis-Respuesta a Droga , Femenino , Voluntarios Sanos , Humanos , Peróxido de Hidrógeno/administración & dosificación , Masculino , Neutrófilos/inmunología , Neutrófilos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Blanqueamiento de Dientes , Blanqueadores Dentales/administración & dosificaciónRESUMEN
INTRODUCTION: Candida parapsilosis is one of the main species that is able to adhere to forming biofilms on inert materials. Adhesion is the first step towards the colonization and invasion of host cells during the infectious process. Among the infections, vulvovaginal candidiasis is increasingly common. The objective was to evaluate the profile of adherence and biofilm formation of eight isolates of C. parapsilosis on the metal used in intrauterine devices (IUDs). METHODS: Eight strains of C. parapsilosis presenting strong adhesion and biofilm formation properties were isolated from vaginal secretions in a previous study. To assay the adhesion and biofilm formation, copper fragments were made and cultivated in tubes containing 3 mL of phosphate-buffered saline and incubated for 6 and 24 h at 37 °C to evaluate biofilm formation. After incubation, the intensity of adherence and of biofilm formation on copper fragments were determined by performing a colony count. RESULTS: All isolates were able to form biofilms and the isolate Cp62 showed many cells joined in a planktonic mode forming biofilms. The use of an IUD is one of the main factors that favors vulvovaginal candidiasis, and the presence of copper in this device increases the chance of recurrent vulvovaginal candidiasis (CVVR) due to the ease with which species of the genus Candida can adhere to inert surfaces. CONCLUSION: This research showed that the clinical isolates studied adhered to IUD copper fragments and formed biofilms, further increasing their virulence.
Asunto(s)
Biopelículas/crecimiento & desarrollo , Candida parapsilosis/fisiología , Candidiasis Vulvovaginal/microbiología , Dispositivos Intrauterinos de Cobre/microbiología , Candida parapsilosis/aislamiento & purificación , Candidiasis Vulvovaginal/etiología , Contaminación de Equipos , Femenino , Humanos , Dispositivos Intrauterinos de Cobre/efectos adversos , Estudios ProspectivosRESUMEN
The incidence of infections caused by rapidly growing mycobacteria (RGM), especially Mycobacterium abscessus subsp. massiliense (Mabs), is increasing worldwide. Severe infections are associated with abscess formation and strong inflammatory response. This study evaluated the antimicrobial and anti-inflammatory activities of a hydroalcoholic extract (BoHE) and ethyl acetate fraction (BoEA) of Bixa orellana leaves. Antimicrobial activity was evaluated by broth microdilution to determine the minimum inhibitory (MIC) and the minimum bactericidal (MBC) concentrations. Cytotoxicity was evaluated using erythrocytes and RAW 264.7 cells. Nitric oxide (NO) was assayed in stimulated RAW 264.7 cells, and inflammatory cell migration and acute toxicity were evaluated in a Mabs-induced peritonitis mouse model. The compounds present in BoEA were identified by high performance liquid chromatography and mass spectrometry (HPLC-MS). The MIC and MBC values were 2.34 mg/mL and 37.5 mg/mL for BoHE and 0.39 mg/mL and 6.25 mg/mL for BoEA. The extracts did not induce significant toxicity in erythrocytes and RAW 264.7 cells. High levels of NO induced by Mabs were decreased by treatment with both extracts. The anti-inflammatory activity was confirmed in vivo by significant reduction of the cell migration to the peritoneum following BoHE and BoEA pretreatment. Animals treated with BoHE or BoEA did not show signs of acute toxicity in stomach, liver, and kidney. The chemical characterization of BoEA (the most active extract) revealed that kaempferol-3-O-coumaroyl glucose is its major component. The extract of B. orellana may be effective for treating infections caused by Mabs.
RESUMEN
The Candida genus comprises opportunistic fungi that can become pathogenic when the immune system of the host fails. Candida albicans is the most important and prevalent species. Polyenes, fluoropyrimidines, echinocandins, and azoles are used as commercial antifungal agents to treat candidiasis. However, the presence of intrinsic and developed resistance against azole antifungals has been extensively documented among several Candida species. The advent of original and re-emergence of classical fungal diseases have occurred as a consequence of the development of the antifungal resistance phenomenon. In this way, the development of new satisfactory therapy for fungal diseases persists as a major challenge of present-day medicine. The design of original drugs from traditional medicines provides new promises in the modern clinic. The urgent need includes the development of alternative drugs that are more efficient and tolerant than those traditional already in use. The identification of new substances with potential antifungal effect at low concentrations or in combination is also a possibility. The present review briefly examines the infections caused by Candida species and focuses on the mechanisms of action associated with the traditional agents used to treat those infections, as well as the current understanding of the molecular basis of resistance development in these fungal species. In addition, this review describes some of the promising alternative molecules and/or substances that could be used as anticandidal agents, their mechanisms of action, and their use in combination with traditional drugs.