Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(22): 9701-9713, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38780660

RESUMEN

Indirect nitrous oxide (N2O) emissions from streams and rivers are a poorly constrained term in the global N2O budget. Current models of riverine N2O emissions place a strong focus on denitrification in groundwater and riverine environments as a dominant source of riverine N2O, but do not explicitly consider direct N2O input from terrestrial ecosystems. Here, we combine N2O isotope measurements and spatial stream network modeling to show that terrestrial-aquatic interactions, driven by changing hydrologic connectivity, control the sources and dynamics of riverine N2O in a mesoscale river network within the U.S. Corn Belt. We find that N2O produced from nitrification constituted a substantial fraction (i.e., >30%) of riverine N2O across the entire river network. The delivery of soil-produced N2O to streams was identified as a key mechanism for the high nitrification contribution and potentially accounted for more than 40% of the total riverine emission. This revealed large terrestrial N2O input implies an important climate-N2O feedback mechanism that may enhance riverine N2O emissions under a wetter and warmer climate. Inadequate representation of hydrologic connectivity in observations and modeling of riverine N2O emissions may result in significant underestimations.


Asunto(s)
Hidrología , Óxido Nitroso , Ríos , Ríos/química , Agua Subterránea/química , Ecosistema , Nitrificación , Suelo/química , Monitoreo del Ambiente
2.
Environ Sci Technol ; 58(3): 1615-1624, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38206005

RESUMEN

Jet engines are important contributors to global CO2 emissions and release enormous numbers of ultrafine particles into different layers of the atmosphere. As a result, aviation emissions are affecting atmospheric chemistry and promote contrail and cloud formation with impacts on earth's radiative balance and climate. Furthermore, the corelease of nanoparticles together with carcinogenic polycyclic aromatic hydrocarbons (PAHs) affects air quality at airports. We studied exhausts of a widely used turbofan engine (CFM56-7B26) operated at five static thrust levels (idle, 7, 30, 65, and 85%) with conventional Jet A-1 fuel and a biofuel blend composed of hydro-processed esters and fatty acids (HEFA). The particles released, the chemical composition of condensable material, and the genotoxic potential of these exhausts were studied. At ground operation, particle number emissions of 3.5 and 0.5 × 1014 particles/kg fuel were observed with highest genotoxic potentials of 41300 and 8800 ng toxicity equivalents (TEQ)/kg fuel at idle and 7% thrust, respectively. Blending jet fuel with HEFA lowered PAH and particle emissions by 7-34% and 65-67% at idle and 7% thrust, respectively, indicating that the use of paraffin-rich biofuels is an effective measure to reduce the exposure of airport personnel to nanoparticles coated with genotoxic PAHs (Trojan horse effect).


Asunto(s)
Contaminantes Atmosféricos , Hidrocarburos , Nanopartículas , Hidrocarburos Policíclicos Aromáticos , Emisiones de Vehículos/análisis , Material Particulado/análisis , Aeronaves , Daño del ADN , Contaminantes Atmosféricos/análisis
3.
J Air Waste Manag Assoc ; 73(12): 930-950, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37846922

RESUMEN

Ammonia (NH3) emissions negatively impact air, soil, and water quality, hence human health and biodiversity. Significant emissions, including the largest sources, originate from single or multiple structures, such as livestock facilities and wastewater treatment plants (WWTPs). The inverse dispersion method (IDM) is effective in measuring total emissions from such sources, although depositional loss between the source and point of measurement is often not accounted for. We applied IDM with a deposition correction to determine total emissions from a representative dairy housing and WWTP during several months in autumn and winter in Switzerland. Total emissions were 1.19 ± 0.48 and 2.27 ± 1.53 kg NH3 d-1 for the dairy housing and WWTP, respectively, which compared well with literature values, despite the paucity of WWTP data. A concurrent comparison with an inhouse tracer ratio method at the dairy housing indicated an offset of the IDM emissions by < 20%. Diurnal emission patterns were evident at both sites mostly driven by changes in air temperature with potential lag effects such as following sludge agitation. Modeled deposition corrections to adjust the concentration loss detected at the measurement point with the associated footprint were 22-28% of the total emissions and the cumulative fraction of deposition to emission modeled with distance from the source was between 7% and 12% for the measurement distances (60-150 m). Although estimates of depositional loss were plausible, the approach is still connected with substantial uncertainty, which calls for future validation measurements. Longer measurement periods encompassing more management activities and environmental conditions are required to assess predictor variable importance on emission dynamics. Combined, IDM with deposition correction will allow the determination of emission factors at reduced efforts and costs, thereby supporting the development and assessment of emission reducing methods and expand the data availability for emission inventories.Implications: Ammonia emissions must be measured to determine emission factors and reporting national inventories. Measurements from structures like farms and industrial plants are complex due to the many different emitting surfaces and the building configuration leading to a poor data availability. Micrometeorological methods provide high resolution emission data from the entire structure, but suffer from uncertainties, as the instruments must be placed at a distance from the structure resulting in a greater loss of the emitted ammonia via dry deposition before it reaches the measurement. This study constrains such emission measurements from a dairy housing and wastewater treatment plant by applying a simple correction to account for the deposition loss and compares the results to other methods.


Asunto(s)
Amoníaco , Purificación del Agua , Humanos , Amoníaco/análisis , Vivienda , Granjas , Aguas del Alcantarillado
4.
Sci Total Environ ; 896: 165027, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37355138

RESUMEN

Less crude protein (CP) in the diet can reduce nitrogen excretion of dairy cattle and lower their ammonia (NH3) and nitrous oxide (N2O) formation potential. The diet composition might also affect emissions of methane (CH4) and carbon dioxide (CO2). However, previous studies did not investigate the effect of diets with different CP levels that are customary practice in Switzerland on NH3 and greenhouse gas emissions on a practical scale. In a case-control approach, we quantified the emissions (NH3, N2O, CH4, CO2) in two separate but identical compartments of a naturally ventilated cubicle housing for lactating dairy cows over six days by using a tracer ratio method. Cows in one compartment received a diet with 116 g CP per kilogram dry matter (DM), in the other compartment with 166 g CP kg-1 DM. Subsequently, diets were switched for a second 6-day measurement phase. The results showed that the diet, aside from outside temperature and wind speed in the housing, was driving NH3 and N2O emissions. NH3 and N2O emission reduction per livestock unit (LU) was on average 46 % and almost 20 %, respectively, for the diet with low CP level compared to the higher CP level. In addition, strong relationships were observed between the CP content of the diet, N excretion in the urine and the milk urea content. An increased temperature or wind speed led to a clear increase in NH3 emissions. Differences in CH4 and CO2 emissions per LU indicated a significant influence of the diet, which cannot be attributed to the CP content. Our herd-level study demonstrated that a significant reduction in NH3 and N2O emissions related to LU, energy-corrected milk as well as DM intake can be achieved by lowering the CP content in the diet.


Asunto(s)
Gases de Efecto Invernadero , Femenino , Bovinos , Animales , Gases de Efecto Invernadero/metabolismo , Lactancia , Amoníaco/metabolismo , Vivienda , Dióxido de Carbono/metabolismo , Estiércol/análisis , Dieta/veterinaria , Leche/química , Metano/metabolismo , Nitrógeno/metabolismo
5.
Anal Chem ; 94(28): 9981-9986, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35776914

RESUMEN

The relative abundance of methane isotopologues offers key insights into the global methane (CH4) cycle. Advances in laser spectroscopy enable routine high-precision measurements even for rare deuterated methane isotopologues, 12CH3D and 13CH3D, provided there are sufficiently high methane amount fractions and reproducible measurement conditions, which can be achieved by CH4 adsorption-desorption techniques. We present a new cryogen-free automated preconcentration device─CleanEx─designed for quantitative extraction of CH4 from large volumes of sample gas and for cleaning by stepwise temperature-controlled desorption to separate interferant gases. We show that CleanEx has the capability to preconcentrate methane by almost 2000-fold from ∼18 L of air. The performance is demonstrated in a range of methane amount fractions between 2 ppm (µmol mol-1), which corresponds to the present-day ambient air, up to 1000 ppm, representative for close to source or process conditions. Advantages over existing devices are a significantly larger primary adsorption trap and a secondary cryo-focusing step, which ensures separation of methane from major atmospheric compounds, i.e., O2, Ar, and CO2. We have demonstrated quantitative extraction of methane, with no significant isotopic fractionation and high repeatability of 0.2‰, 0.6‰, and 0.8‰ (n = 42) for the studied isotopologue ratios, 13CH4/12CH4, 12CH3D/12CH4, and 13CH3D/12CH4, during cryogenic adsorption-desorption on HayeSep D material. The developed device in combination with a suitable laser spectrometer offers a robust and autonomous method for precise continuous monitoring of δ13C-CH4 and δD-CH4 in ambient air and optionally Δ13CH3D in process-derived methane.


Asunto(s)
Gases , Metano , Rayos Láser , Metano/análisis
6.
Water Res X ; 15: 100130, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35287381

RESUMEN

Nitrous oxide (N2O) dominates greenhouse gas emissions in wastewater treatment plants (WWTPs). Formation of N2O occurs during biological nitrogen removal, involves multiple microbial pathways, and is typically very dynamic. Consequently, N2O mitigation strategies require an improved understanding of nitrogen transformation pathways and their modulating controls. Analyses of the nitrogen (N) and oxygen (O) isotopic composition of N2O and its substrates at natural abundance have been shown to provide valuable information on formation and reduction pathways in laboratory settings, but have rarely been applied to full-scale WWTPs. Here we show that N-species isotope ratio measurements at natural abundance level, combined with long-term N2O monitoring, allow identification of the N2O production pathways in a full-scale plug-flow WWTP (Hofen, Switzerland). Heterotrophic denitrification appears as the main N2O production pathway under all tested process conditions (0-2 mgO2/l, high and low loading conditions), while nitrifier denitrification was less important, and more variable. N2O production by hydroxylamine oxidation was not observed. Fractional N2O elimination by reduction to dinitrogen (N2) during anoxic conditions was clearly indicated by a concomitant increase in site preference, δ18O(N2O) and δ15N(N2O). N2O reduction increased with decreasing availability of dissolved inorganic N and organic substrates, which represents the link between diurnal N2O emission dynamics and organic substrate fluctuations. Consequently, dosing ammonium-rich reject water under low-organic-substrate conditions is unfavorable, as it is very likely to cause high net N2O emissions. Our results demonstrate that monitoring of the N2O isotopic composition holds a high potential to disentangle N2O formation mechanisms in engineered systems, such as full-scale WWTP. Our study serves as a starting point for advanced campaigns in the future combining isotopic technologies in WWTP with complementary approaches, such as mathematical modeling of N2O formation or microbial assays to develop efficient N2O mitigation strategies.

7.
Rapid Commun Mass Spectrom ; 36(13): e9296, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35289456

RESUMEN

RATIONALE: Information on the isotopic composition of nitrous oxide (N2 O) at natural abundance supports the identification of its source and sink processes. In recent years, a number of mass spectrometric and laser spectroscopic techniques have been developed and are increasingly used by the research community. Advances in this active research area, however, critically depend on the availability of suitable N2 O isotope Reference Materials (RMs). METHODS: Within the project Metrology for Stable Isotope Reference Standards (SIRS), seven pure N2 O isotope RMs have been developed and their 15 N/14 N, 18 O/16 O, 17 O/16 O ratios and 15 N site preference (SP) have been analysed by specialised laboratories against isotope reference materials. A particular focus was on the 15 N site-specific isotopic composition, as this measurand is both highly diagnostic for source appointment and challenging to analyse and link to existing scales. RESULTS: The established N2 O isotope RMs offer a wide spread in delta (δ) values: δ15 N: 0 to +104‰, δ18 O: +39 to +155‰, and δ15 NSP : -4 to +20‰. Conversion and uncertainty propagation of δ15 N and δ18 O to the Air-N2 and VSMOW scales, respectively, provides robust estimates for δ15 N(N2 O) and δ18 O(N2 O), with overall uncertainties of about 0.05‰ and 0.15‰, respectively. For δ15 NSP , an offset of >1.5‰ compared with earlier calibration approaches was detected, which should be revisited in the future. CONCLUSIONS: A set of seven N2 O isotope RMs anchored to the international isotope-ratio scales was developed that will promote the implementation of the recommended two-point calibration approach. Particularly, the availability of δ17 O data for N2 O RMs is expected to improve data quality/correction algorithms with respect to δ15 NSP and δ15 N analysis by mass spectrometry. We anticipate that the N2 O isotope RMs will enhance compatibility between laboratories and accelerate research progress in this emerging field.


Asunto(s)
Óxido Nitroso , Calibración , Espectrometría de Masas/métodos , Óxido Nitroso/análisis , Isótopos de Oxígeno/análisis , Estándares de Referencia
8.
Opt Express ; 30(3): 4631-4641, 2022 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-35209695

RESUMEN

We present a quantum cascade laser-based absorption spectrometer deploying a compact (145 mL volume) segmented circular multipass cell (SC-MPC) with 6 m optical path length. This SC-MPC is embedded into an effective cooling system to facilitate operation at cryogenic temperatures. For CO2, the sample is cooled to 153 K, i.e. close to the sublimation point at 10 mbar. This enables efficient suppression of interfering hot-band transitions of the more abundant isotopic species and thereby enhances analytical precision. As a demonstration, the amount fractions of all three CO2 isotopologues involved in the kinetic isotope exchange reaction of 12C16O2 + 12C18O2⇌ 2·12C16O18O are measured. The precision in the ratios [12C18O2]/[12C16O2] and [12C16O18O]/[12C16O2] is 0.05 ‰ with 25 s integration time. In addition, we determine the variation of the equilibrium constant, K, of the above exchange reaction for carbon-dioxide samples equilibrated at 300 K and 1273 K, respectively.

9.
Nat Commun ; 13(1): 330, 2022 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-35039512

RESUMEN

Globally, tropical forests are assumed to be an important source of atmospheric nitrous oxide (N2O) and sink for methane (CH4). Yet, although the Congo Basin comprises the second largest tropical forest and is considered the most pristine large basin left on Earth, in situ N2O and CH4 flux measurements are scarce. Here, we provide multi-year data derived from on-ground soil flux (n = 1558) and riverine dissolved gas concentration (n = 332) measurements spanning montane, swamp, and lowland forests. Each forest type core monitoring site was sampled at least for one hydrological year between 2016 - 2020 at a frequency of 7-14 days. We estimate a terrestrial CH4 uptake (in kg CH4-C ha-1 yr-1) for montane (-4.28) and lowland forests (-3.52) and a massive CH4 release from swamp forests (non-inundated 2.68; inundated 341). All investigated forest types were a N2O source (except for inundated swamp forest) with 0.93, 1.56, 3.5, and -0.19 kg N2O-N ha-1 yr-1 for montane, lowland, non-inundated swamp, and inundated swamp forests, respectively.

10.
Chimia (Aarau) ; 76(7-8): 656-660, 2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-38071632

RESUMEN

Nitrous oxide (N2O) is an important trace gas contributing to global warming and depletion of ozone in the stratosphere. Its increasing abundance is caused mainly by anthropogenic sources, such as application of fertilizers in agriculture or emissions from industry. To understand the N2O global budget, its sources and sinks need to be well-described and quantified. In this project, a new method for N2O source appointment was developed that can help with this task. The method is based on analysis of the eight most abundant isotopic molecules of N2O, using quantum cascade laser absorption spectroscopy (QCLAS). The applicability of the method towards the N2O biogeochemical cycle was demonstrated on a prominent N2O source (bacterial denitrification) and the most important N2O sink (UV photolysis) on samples prepared in laboratory experiments. An extension of the QCLAS method to natural samples can be achieved by hyphenation with a preconcentration technique that increases concentration of the analyte and standardizes the sample matrix. This article provides an overview of currently applied preconcentration techniques in the field of greenhouse-gas analysis and a description of the preconcentration device TREX that will be employed in future projects with the developed QCLAS method.

11.
ISME J ; 15(11): 3357-3374, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34035444

RESUMEN

Primary tropical forests generally exhibit large gaseous nitrogen (N) losses, occurring as nitric oxide (NO), nitrous oxide (N2O) or elemental nitrogen (N2). The release of N2O is of particular concern due to its high global warming potential and destruction of stratospheric ozone. Tropical forest soils are predicted to be among the largest natural sources of N2O; however, despite being the world's second-largest rainforest, measurements of gaseous N-losses from forest soils of the Congo Basin are scarce. In addition, long-term studies investigating N2O fluxes from different forest ecosystem types (lowland and montane forests) are scarce. In this study we show that fluxes measured in the Congo Basin were lower than fluxes measured in the Neotropics, and in the tropical forests of Australia and South East Asia. In addition, we show that despite different climatic conditions, average annual N2O fluxes in the Congo Basin's lowland forests (0.97 ± 0.53 kg N ha-1 year-1) were comparable to those in its montane forest (0.88 ± 0.97 kg N ha-1 year-1). Measurements of soil pore air N2O isotope data at multiple depths suggests that a microbial reduction of N2O to N2 within the soil may account for the observed low surface N2O fluxes and low soil pore N2O concentrations. The potential for microbial reduction is corroborated by a significant abundance and expression of the gene nosZ in soil samples from both study sites. Although isotopic and functional gene analyses indicate an enzymatic potential for complete denitrification, combined gaseous N-losses (N2O, N2) are unlikely to account for the missing N-sink in these forests. Other N-losses such as NO, N2 via Feammox or hydrological particulate organic nitrogen export could play an important role in soils of the Congo Basin and should be the focus of future research.


Asunto(s)
Ecosistema , Suelo , Congo , Bosques , Isótopos , Nitrógeno/análisis , Óxido Nitroso/análisis
12.
Sci Rep ; 11(1): 7850, 2021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33846510

RESUMEN

Anaerobic ammonium oxidation (anammox) plays an important role in aquatic systems as a sink of bioavailable nitrogen (N), and in engineered processes by removing ammonium from wastewater. The isotope effects anammox imparts in the N isotope signatures (15N/14N) of ammonium, nitrite, and nitrate can be used to estimate its role in environmental settings, to describe physiological and ecological variations in the anammox process, and possibly to optimize anammox-based wastewater treatment. We measured the stable N-isotope composition of ammonium, nitrite, and nitrate in wastewater cultivations of anammox bacteria. We find that the N isotope enrichment factor 15ε for the reduction of nitrite to N2 is consistent across all experimental conditions (13.5‰ ± 3.7‰), suggesting it reflects the composition of the anammox bacteria community. Values of 15ε for the oxidation of nitrite to nitrate (inverse isotope effect, - 16 to - 43‰) and for the reduction of ammonium to N2 (normal isotope effect, 19-32‰) are more variable, and likely controlled by experimental conditions. We argue that the variations in the isotope effects can be tied to the metabolism and physiology of anammox bacteria, and that the broad range of isotope effects observed for anammox introduces complications for analyzing N-isotope mass balances in natural systems.

13.
Animals (Basel) ; 10(6)2020 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-32599809

RESUMEN

The present study evaluated the effects of linseed supplementation on CH4 emission and milk fatty acid composition in dairy cows measured at the group level in an experimental dairy loose housing using a tracer gas technique and individually in tied stalls and respiration chambers. Cows (2 × 20) were maintained in two separate sections under loose-housing conditions and received a diet supplemented with extruded linseed (L) lipids (29 g·kg-1 dry matter) or a control (C) diet containing corn flour. Subsequently, 2 × 6 cows per dietary group were investigated in a tied-housing system and respiration chambers. Substantially higher proportions of favorable milk fatty acids were recovered in L cows when compared with C cows at the group level, making the analysis of bulk milk a suitable control instrument for retailers. Linseed supplementation resulted in a slightly lower diurnal course of CH4 emission intensity than the control at the group and individual levels. However, we found no more than a trend for a CH4 mitigating effect, unlike in other studies supplementing similar linseed lipid levels. Feed supplements in concentrations that lead to a significant reduction in CH4 emissions must show whether the reduction potential determined at the group and individual levels is comparable.

14.
Rapid Commun Mass Spectrom ; 34(20): e8858, 2020 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-32548934

RESUMEN

The isotopic composition of nitrous oxide (N2 O) provides useful information for evaluating N2 O sources and budgets. Due to the co-occurrence of multiple N2 O transformation pathways, it is, however, challenging to use isotopic information to quantify the contribution of distinct processes across variable spatiotemporal scales. Here, we present an overview of recent progress in N2 O isotopic studies and provide suggestions for future research, mainly focusing on: analytical techniques; production and consumption processes; and interpretation and modelling approaches. Comparing isotope-ratio mass spectrometry (IRMS) with laser absorption spectroscopy (LAS), we conclude that IRMS is a precise technique for laboratory analysis of N2 O isotopes, while LAS is more suitable for in situ/inline studies and offers advantages for site-specific analyses. When reviewing the link between the N2 O isotopic composition and underlying mechanisms/processes, we find that, at the molecular scale, the specific enzymes and mechanisms involved determine isotopic fractionation effects. In contrast, at plot-to-global scales, mixing of N2 O derived from different processes and their isotopic variability must be considered. We also find that dual isotope plots are effective for semi-quantitative attribution of co-occurring N2 O production and reduction processes. More recently, process-based N2 O isotopic models have been developed for natural abundance and 15 N-tracing studies, and have been shown to be effective, particularly for data with adequate temporal resolution. Despite the significant progress made over the last decade, there is still great need and potential for future work, including development of analytical techniques, reference materials and inter-laboratory comparisons, further exploration of N2 O formation and destruction mechanisms, more observations across scales, and design and validation of interpretation and modelling approaches. Synthesizing all these efforts, we are confident that the N2 O isotope community will continue to advance our understanding of N2 O transformation processes in all spheres of the Earth, and in turn to gain improved constraints on regional and global budgets.

15.
Rapid Commun Mass Spectrom ; 34(15): e8836, 2020 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-32430945

RESUMEN

RATIONALE: Unravelling the biogeochemical cycle of the potent greenhouse gas nitrous oxide (N2 O) is an underdetermined problem in environmental sciences due to the multiple source and sink processes involved, which complicate mitigation of its emissions. Measuring the doubly isotopically substituted molecules (isotopocules) of N2 O can add new opportunities to fingerprint and constrain its cycle. METHODS: We present a laser spectroscopic technique to selectively and simultaneously measure the eight most abundant isotopocules of N2 O, including three doubly substituted species - so called "clumped isotopes". For the absolute quantification of individual isotopocule abundances, we propose a new calibration scheme that combines thermal equilibration of a working standard gas with a direct mole fraction-based approach. RESULTS: The method is validated for a large range of isotopic composition values by comparison with other established methods (laser spectroscopy using conventional isotopic scale and isotope ratio mass spectrometry). Direct intercomparison with recently developed ultrahigh-resolution mass spectrometry shows clearly the advantages of the new laser technique, especially with respect to site specificity of isotopic substitution in the N2 O molecule. CONCLUSIONS: Our study represents a new methodological basis for the measurements of both singly substituted and clumped N2 O isotopes. It has a high potential to stimulate future research in the N2 O community by establishing a new class of reservoir-insensitive tracers and molecular-scale insights.

16.
Chimia (Aarau) ; 73(4): 232-238, 2019 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-30975249

RESUMEN

Nitrous oxide, N2O, is the environmentally most relevant constituent of the biogeochemical nitrogen cycle. Human activities, e.g. the agricultural use of mineral fertilizers, accelerate nitrogen transformations, leading to higher emissions of this strong greenhouse gas. Investigating the stable isotopic composition of N2O provides a better understanding of formation mechanisms to disentangle its variable source and sink processes. Mid-infrared (mid-IR) laser spectroscopy is a highly attractive technique to analyze N2O isotopocules based on their specific ro-vibrational absorption characteristics. Specifically, quantum cascade laser absorption spectroscopy (QCLAS) in combination with preconcentration has shown to be powerful for simultaneous and high-precision analysis of the main N2O isotopocules. Recently, in the scope of my PhD project, we have been advancing this analytical technique for the analysis of the very rare doubly substituted N2O isotopic species 15N14N18O, 14N15N18O, and 15N15N16O, also known as clumped isotopes. Currently, we are investigating the potential of these novel isotopic tracers to track the complex N2O production and consumption pathways. Improved understanding of the nitrogen cycle will be a major step towards N2O emission reduction.

18.
Environ Sci Technol ; 52(18): 10709-10718, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30149706

RESUMEN

The fast replacement of traditional gasoline port-fuel injection technology with gasoline direct-injection (GDI) vehicles is expected to have a substantial impact on urban air quality. Herein we report on effects of four prototype gasoline particle filters (GPFs) on exhausts of a 1.6 L Euro-5 GDI vehicle. Two noncoated and two filters with catalytic coatings were investigated. These filters, on average, lowered PN emissions 4-7-fold to 4.0-6.8 × 1011 particles/km. Genotoxic PAHs were lowered 2-5-fold too with GPF-1-3, with GPF-1 having the highest efficiency, 79% and resulting in 45 ng toxic equivalent concentration (TEQ)/km. Thus, particle filtration efficiencies and reduction of the genotoxic potentials are correlated. GPF-4 showing the poorest particle filtration efficiency (66-78%) also released exhausts with highest genotoxic potential of 240-530 ng TEQ/km. We recently reported particle-number (PN) emissions of four generations of GDI vehicles (Euro-3 to Euro-6) which released, on average, 2.5 × 1012 ± 1.8 × 1012 particles/km exceeding the current European limit of 6.0 × 1011 particle/km. Thus, the implementation of filters to GDI vehicles requires best-available technology (BAT) with PN efficiencies >98% and catalytic activity, to avoid store-and-release of genotoxic PAHs. In-series applications of BAT-filters to GDI vehicles can lower genotoxic PAHs and soot nanoparticles.


Asunto(s)
Contaminantes Atmosféricos , Nanopartículas , Daño del ADN , Gasolina , Material Particulado , Emisiones de Vehículos
19.
Rapid Commun Mass Spectrom ; 32(15): 1207-1214, 2018 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-29729051

RESUMEN

RATIONALE: Despite a long history and growing interest in isotopic analyses of N2 O, there is a lack of isotopically characterized N2 O isotopic reference materials (standards) to enable normalization and reporting of isotope-delta values. Here we report the isotopic characterization of two pure N2 O gas reference materials, USGS51 and USGS52, which are now available for laboratory calibration (https://isotopes.usgs.gov/lab/referencematerials.html). METHODS: A total of 400 sealed borosilicate glass tubes of each N2 O reference gas were prepared from a single gas filling of a high vacuum line. We demonstrated isotopic homogeneity via dual-inlet isotope-ratio mass spectrometry. Isotopic analyses of these reference materials were obtained from eight laboratories to evaluate interlaboratory variation and provide preliminary isotopic characterization of their δ15 N, δ18 O, δ15 Nα , δ15 Nß and site preference (SP ) values. RESULTS: The isotopic homogeneity of both USGS51 and USGS52 was demonstrated by one-sigma standard deviations associated with the determinations of their δ15 N, δ18 O, δ15 Nα , δ15 Nß and SP values of 0.12 mUr or better. The one-sigma standard deviations of SP measurements of USGS51 and USGS52 reported by eight laboratories participating in the interlaboratory comparison were 1.27 and 1.78 mUr, respectively. CONCLUSIONS: The agreement of isotope-delta values obtained in the interlaboratory comparison was not sufficient to provide reliable accurate isotope measurement values for USGS51 and USGS52. We propose that provisional values for the isotopic composition of USGS51 and USGS52 determined at the Tokyo Institute of Technology can be adopted for normalizing and reporting sample data until further refinements are achieved through additional calibration efforts.

20.
Isotopes Environ Health Stud ; 54(1): 1-15, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28681639

RESUMEN

Understanding and quantifying the biogeochemical cycle of N2O is essential to develop effective N2O emission mitigation strategies. This study presents a novel, fully automated measurement technique that allows simultaneous, high-precision quantification of the four main N2O isotopocules (14N14N16O, 14N15N16O, 15N14N16O and 14N14N18O) in ambient air. The instrumentation consists of a trace gas extractor (TREX) coupled to a quantum cascade laser absorption spectrometer, designed for autonomous operation at remote measurement sites. The main advantages this system has over its predecessors are a compact spectrometer design with improved temperature control and a more compact and powerful TREX device. The adopted TREX device enhances the flexibility of the preconcentration technique for higher adsorption volumes to target rare isotope species and lower adsorption temperatures for highly volatile substances. All system components have been integrated into a standardized instrument rack to improve portability and accessibility for maintenance. With an average sampling frequency of approximately 1 h-1, this instrumentation achieves a repeatability of 0.09, 0.13, 0.17 and 0.12 ‰ for δ15Nα, δ15Nß, δ18O and site preference of N2O, respectively, for pressurized ambient air. The repeatability for N2O mole fraction measurements is better than 1 ppb (parts per billion, 10-9 moles per mole of dry air).


Asunto(s)
Monitoreo del Ambiente/métodos , Isótopos de Nitrógeno/análisis , Óxido Nitroso/análisis , Isótopos de Oxígeno/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA