Your browser doesn't support javascript.
loading
In-depth analysis of N2O fluxes in tropical forest soils of the Congo Basin combining isotope and functional gene analysis.
Gallarotti, Nora; Barthel, Matti; Verhoeven, Elizabeth; Pereira, Engil Isadora Pujol; Bauters, Marijn; Baumgartner, Simon; Drake, Travis W; Boeckx, Pascal; Mohn, Joachim; Longepierre, Manon; Mugula, John Kalume; Makelele, Isaac Ahanamungu; Ntaboba, Landry Cizungu; Six, Johan.
Afiliación
  • Gallarotti N; Department of Environmental Systems Science, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland. nora.gallarotti@erdw.ethz.ch.
  • Barthel M; Department of Environmental Systems Science, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland.
  • Verhoeven E; College of Agricultural Sciences, Oregon State University, Corvallis, OR, USA.
  • Pereira EIP; School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Edinburg, TX, USA.
  • Bauters M; Isotope Bioscience Laboratory, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
  • Baumgartner S; Computational and Applied Vegetation Ecology Lab, Department of Environment, Ghent University, Ghent, Belgium.
  • Drake TW; Department of Environmental Systems Science, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland.
  • Boeckx P; Earth and Life Institute, Université Catholique de Louvain, Louvain, Belgium.
  • Mohn J; Department of Environmental Systems Science, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland.
  • Longepierre M; Isotope Bioscience Laboratory, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
  • Mugula JK; Laboratory for Air Pollution/Environmental Technology, Swiss Federal Laboratories of Materials Science and Technology, Empa Dubendorf, Switzerland.
  • Makelele IA; Department of Environmental Systems Science, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland.
  • Ntaboba LC; Département de Biologie, Université Officielle de Bukavu, Bukavu, Democratic Republic of Congo.
  • Six J; Département de Biologie, Université Officielle de Bukavu, Bukavu, Democratic Republic of Congo.
ISME J ; 15(11): 3357-3374, 2021 11.
Article en En | MEDLINE | ID: mdl-34035444
Primary tropical forests generally exhibit large gaseous nitrogen (N) losses, occurring as nitric oxide (NO), nitrous oxide (N2O) or elemental nitrogen (N2). The release of N2O is of particular concern due to its high global warming potential and destruction of stratospheric ozone. Tropical forest soils are predicted to be among the largest natural sources of N2O; however, despite being the world's second-largest rainforest, measurements of gaseous N-losses from forest soils of the Congo Basin are scarce. In addition, long-term studies investigating N2O fluxes from different forest ecosystem types (lowland and montane forests) are scarce. In this study we show that fluxes measured in the Congo Basin were lower than fluxes measured in the Neotropics, and in the tropical forests of Australia and South East Asia. In addition, we show that despite different climatic conditions, average annual N2O fluxes in the Congo Basin's lowland forests (0.97 ± 0.53 kg N ha-1 year-1) were comparable to those in its montane forest (0.88 ± 0.97 kg N ha-1 year-1). Measurements of soil pore air N2O isotope data at multiple depths suggests that a microbial reduction of N2O to N2 within the soil may account for the observed low surface N2O fluxes and low soil pore N2O concentrations. The potential for microbial reduction is corroborated by a significant abundance and expression of the gene nosZ in soil samples from both study sites. Although isotopic and functional gene analyses indicate an enzymatic potential for complete denitrification, combined gaseous N-losses (N2O, N2) are unlikely to account for the missing N-sink in these forests. Other N-losses such as NO, N2 via Feammox or hydrological particulate organic nitrogen export could play an important role in soils of the Congo Basin and should be the focus of future research.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Suelo / Ecosistema País/Región como asunto: Africa Idioma: En Revista: ISME J Asunto de la revista: MICROBIOLOGIA / SAUDE AMBIENTAL Año: 2021 Tipo del documento: Article País de afiliación: Suiza Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Suelo / Ecosistema País/Región como asunto: Africa Idioma: En Revista: ISME J Asunto de la revista: MICROBIOLOGIA / SAUDE AMBIENTAL Año: 2021 Tipo del documento: Article País de afiliación: Suiza Pais de publicación: Reino Unido