Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
STAR Protoc ; 4(1): 102028, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36640369

RESUMEN

The auxin-inducible degron (AID) provides reversible, spatiotemporal control for the knockdown of target proteins. Here, we present a protocol for AID-mediated protein knockdown in Caenorhabditis elegans. We describe steps for generating the knock-in mutants using two CRISPR-Cas9 genome editing techniques and preparing the auxin-containing nematode growth media (NGM) plates. We also detail AID-mediated spatiotemporal protein knockdown. For complete details on the use and execution of this protocol, please refer to Kurashina et al. (2021).1.


Asunto(s)
Caenorhabditis elegans , Ácidos Indolacéticos , Animales , Caenorhabditis elegans/genética , Ácidos Indolacéticos/farmacología , Sistemas CRISPR-Cas/genética , Edición Génica/métodos
2.
Genetics ; 223(2)2023 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-36630525

RESUMEN

The nematode Caenorhabditis elegans is a research model organism particularly suited to the mechanistic understanding of synapse genesis in the nervous system. Armed with powerful genetics, knowledge of complete connectomics, and modern genomics, studies using C. elegans have unveiled multiple key regulators in the formation of a functional synapse. Importantly, many signaling networks display remarkable conservation throughout animals, underscoring the contributions of C. elegans research to advance the understanding of our brain. In this chapter, we will review up-to-date information of the contribution of C. elegans to the understanding of chemical synapses, from structure to molecules and to synaptic remodeling.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/genética , Sinapsis/genética , Proteínas de Caenorhabditis elegans/genética , Transducción de Señal
3.
Elife ; 112022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36378164

RESUMEN

Precise synaptic connection of neurons with their targets is essential for the proper functioning of the nervous system. A plethora of signaling pathways act in concert to mediate the precise spatial arrangement of synaptic connections. Here we show a novel role for a gap junction protein in controlling tiled synaptic arrangement in the GABAergic motor neurons in Caenorhabditis elegans, in which their axons and synapses overlap minimally with their neighboring neurons within the same class. We found that while EGL-20/Wnt controls axonal tiling, their presynaptic tiling is mediated by a gap junction protein UNC-9/Innexin, that is localized at the presynaptic tiling border between neighboring dorsal D-type GABAergic motor neurons. Strikingly, the gap junction channel activity of UNC-9 is dispensable for its function in controlling tiled presynaptic patterning. While gap junctions are crucial for the proper functioning of the nervous system as channels, our finding uncovered the novel channel-independent role of UNC-9 in synapse patterning.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Sinapsis/metabolismo , Neuronas Motoras/metabolismo , Conexinas/genética , Conexinas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo
4.
Elife ; 102021 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-34388088

RESUMEN

Neuronal cell fate determinants establish the identities of neurons by controlling gene expression to regulate neuronal morphology and synaptic connectivity. However, it is not understood if neuronal cell fate determinants have postmitotic functions in synapse pattern formation. Here we identify a novel role for UNC-4 homeobox protein and its corepressor UNC-37/Groucho, in tiled synaptic patterning of the cholinergic motor neurons in Caenorhabditis elegans. We show that unc-4 is not required during neurogenesis but is required in the postmitotic neurons for proper synapse patterning. In contrast, unc-37 is required in both developing and postmitotic neurons. The synaptic tiling defects of unc-4 mutants are suppressed by bar-1/ß-catenin mutation, which positively regulates the expression of ceh-12/HB9. Ectopic ceh-12 expression partly underlies the synaptic tiling defects of unc-4 and unc-37 mutants. Our results reveal a novel postmitotic role of neuronal cell fate determinants in synapse pattern formation through inhibiting the canonical Wnt signaling pathway.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiología , Expresión Génica , Genes Homeobox , Proteínas de Homeodominio/genética , Factores de Transcripción/genética , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Co-Represoras/genética , Proteínas de Homeodominio/metabolismo , Mitosis , Neuronas/fisiología , Sinapsis/fisiología , Factores de Transcripción/metabolismo
5.
Proc Natl Acad Sci U S A ; 117(1): 656-667, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31754030

RESUMEN

A major challenge facing the genetics of autism spectrum disorders (ASDs) is the large and growing number of candidate risk genes and gene variants of unknown functional significance. Here, we used Caenorhabditis elegans to systematically functionally characterize ASD-associated genes in vivo. Using our custom machine vision system, we quantified 26 phenotypes spanning morphology, locomotion, tactile sensitivity, and habituation learning in 135 strains each carrying a mutation in an ortholog of an ASD-associated gene. We identified hundreds of genotype-phenotype relationships ranging from severe developmental delays and uncoordinated movement to subtle deficits in sensory and learning behaviors. We clustered genes by similarity in phenomic profiles and used epistasis analysis to discover parallel networks centered on CHD8•chd-7 and NLGN3•nlg-1 that underlie mechanosensory hyperresponsivity and impaired habituation learning. We then leveraged our data for in vivo functional assays to gauge missense variant effect. Expression of wild-type NLG-1 in nlg-1 mutant C. elegans rescued their sensory and learning impairments. Testing the rescuing ability of conserved ASD-associated neuroligin variants revealed varied partial loss of function despite proper subcellular localization. Finally, we used CRISPR-Cas9 auxin-inducible degradation to determine that phenotypic abnormalities caused by developmental loss of NLG-1 can be reversed by adult expression. This work charts the phenotypic landscape of ASD-associated genes, offers in vivo variant functional assays, and potential therapeutic targets for ASD.


Asunto(s)
Trastorno del Espectro Autista/genética , Moléculas de Adhesión Celular Neuronal/genética , Habituación Psicofisiológica/genética , Fenómica/métodos , Animales , Animales Modificados Genéticamente , Trastorno del Espectro Autista/fisiopatología , Técnicas de Observación Conductual/métodos , Conducta Animal/fisiología , Caenorhabditis elegans , Proteínas de Unión al ADN/genética , Modelos Animales de Enfermedad , Epistasis Genética , Humanos , Inmunoglobulinas/genética , Locomoción/genética , Proteínas de la Membrana/genética , Mutación Missense , Fenotipo , Factores de Transcripción/genética
6.
Elife ; 82019 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-31804181

RESUMEN

During development, the nervous system undergoes a refinement process by which neurons initially extend an excess number of neurites, the majority of which will be eliminated by the mechanism called neurite pruning. Some neurites undergo stereotyped and developmentally regulated pruning. However, the signaling cues that instruct stereotyped neurite pruning are yet to be fully elucidated. Here we show that Wnt morphogen instructs stereotyped neurite pruning for proper neurite projection patterning of the cholinergic motor neuron called PDB in C. elegans. In lin-44/wnt and lin-17/frizzled mutant animals, the PDB neurites often failed to prune and grew towards the lin-44-expressing cells. Surprisingly, membrane-tethered lin-44 is sufficient to induce proper neurite pruning in PDB, suggesting that neurite pruning does not require a Wnt gradient. LIN-17 and DSH-1/Dishevelled proteins were recruited to the pruning neurites in lin-44-dependent manners. Our results revealed the novel gradient-independent role of Wnt signaling in instructing neurite pruning.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriología , Proteínas Dishevelled/metabolismo , Glicoproteínas/metabolismo , Sistema Nervioso/embriología , Plasticidad Neuronal , Receptores Acoplados a Proteínas G/metabolismo , Vía de Señalización Wnt , Animales , Regulación del Desarrollo de la Expresión Génica , Mapas de Interacción de Proteínas
7.
Cell Mol Life Sci ; 76(14): 2719-2738, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31037336

RESUMEN

Precise neuronal wiring is critical for the function of the nervous system and is ultimately determined at the level of individual synapses. Neurons integrate various intrinsic and extrinsic cues to form synapses onto their correct targets in a stereotyped manner. In the past decades, the nervous system of nematode (Caenorhabditis elegans) has provided the genetic platform to reveal the genetic and molecular mechanisms of synapse formation and specificity. In this review, we will summarize the recent discoveries in synapse formation and specificity in C. elegans.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Neuronas/metabolismo , Sinapsis/fisiología , Animales , Transducción de Señal
8.
Dis Model Mech ; 11(12)2018 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-30361258

RESUMEN

Our ability to sequence genomes has vastly surpassed our ability to interpret the genetic variation we discover. This presents a major challenge in the clinical setting, where the recent application of whole-exome and whole-genome sequencing has uncovered thousands of genetic variants of uncertain significance. Here, we present a strategy for targeted human gene replacement and phenomic characterization, based on CRISPR-Cas9 genome engineering in the genetic model organism Caenorhabditis elegans, that will facilitate assessment of the functional conservation of human genes and structure-function analysis of disease-associated variants with unprecedented precision. We validate our strategy by demonstrating that direct single-copy replacement of the C. elegans ortholog (daf-18) with the critical human disease-associated gene phosphatase and tensin homolog (PTEN) is sufficient to rescue multiple phenotypic abnormalities caused by complete deletion of daf-18, including complex chemosensory and mechanosensory impairments. In addition, we used our strategy to generate animals harboring a single copy of the known pathogenic lipid phosphatase inactive PTEN variant (PTEN-G129E), and showed that our automated in vivo phenotypic assays could accurately and efficiently classify this missense variant as loss of function. The integrated nature of the human transgenes allows for analysis of both homozygous and heterozygous variants and greatly facilitates high-throughput precision medicine drug screens. By combining genome engineering with rapid and automated phenotypic characterization, our strategy streamlines the identification of novel conserved gene functions in complex sensory and learning phenotypes that can be used as in vivo functional assays to decipher variants of uncertain significance.


Asunto(s)
Proteína 9 Asociada a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Caenorhabditis elegans/genética , Secuencia Conservada , Marcación de Gen , Variación Genética , Secuencia de Aminoácidos , Animales , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Quimiotaxis/efectos de los fármacos , Conducta de Elección/efectos de los fármacos , Eliminación de Gen , Dosificación de Gen , Edición Génica , Genes de Helminto , Humanos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fosfohidrolasa PTEN/química , Fosfohidrolasa PTEN/genética , Fenotipo , Cloruro de Sodio/farmacología
9.
Elife ; 72018 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-30063210

RESUMEN

During development, neurons form synapses with their fate-determined targets. While we begin to elucidate the mechanisms by which extracellular ligand-receptor interactions enhance synapse specificity by inhibiting synaptogenesis, our knowledge about their intracellular mechanisms remains limited. Here we show that Rap2 GTPase (rap-2) and its effector, TNIK (mig-15), act genetically downstream of Plexin (plx-1) to restrict presynaptic assembly and to form tiled synaptic innervation in C. elegans. Both constitutively GTP- and GDP-forms of rap-2 mutants exhibit synaptic tiling defects as plx-1 mutants, suggesting that cycling of the RAP-2 nucleotide state is critical for synapse inhibition. Consistently, PLX-1 suppresses local RAP-2 activity. Excessive ectopic synapse formation in mig-15 mutants causes a severe synaptic tiling defect. Conversely, overexpression of mig-15 strongly inhibited synapse formation, suggesting that mig-15 is a negative regulator of synapse formation. These results reveal that subcellular regulation of small GTPase activity by Plexin shapes proper synapse patterning in vivo.


Asunto(s)
Proteínas de Caenorhabditis elegans/química , Proteínas del Tejido Nervioso/química , Proteínas Serina-Treonina Quinasas/química , Receptores de Superficie Celular/química , Proteínas de Unión al GTP rap/química , Animales , Caenorhabditis elegans/química , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Guanosina Difosfato/química , Guanosina Trifosfato/química , Mutación , Proteínas del Tejido Nervioso/genética , Neurogénesis/genética , Neuronas/química , Proteínas Serina-Treonina Quinasas/genética , Receptores de Superficie Celular/genética , Transducción de Señal/genética , Sinapsis/química , Sinapsis/genética , Sinapsis/patología , Proteínas de Unión al GTP rap/genética
10.
Proc Natl Acad Sci U S A ; 115(5): E954-E963, 2018 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-29348204

RESUMEN

The adenomatous polyposis coli (APC) tumor suppressor has dual functions in Wnt/ß-catenin signaling and accurate chromosome segregation and is frequently mutated in colorectal cancers. Although APC contributes to proper cell division, the underlying mechanisms remain poorly understood. Here we show that Caenorhabditis elegans APR-1/APC is an attenuator of the pulling forces acting on the mitotic spindle. During asymmetric cell division of the C. elegans zygote, a LIN-5/NuMA protein complex localizes dynein to the cell cortex to generate pulling forces on astral microtubules that position the mitotic spindle. We found that APR-1 localizes to the anterior cell cortex in a Par-aPKC polarity-dependent manner and suppresses anterior centrosome movements. Our combined cell biological and mathematical analyses support the conclusion that cortical APR-1 reduces force generation by stabilizing microtubule plus-ends at the cell cortex. Furthermore, APR-1 functions in coordination with LIN-5 phosphorylation to attenuate spindle-pulling forces. Our results document a physical basis for the attenuation of spindle-pulling force, which may be generally used in asymmetric cell division and, when disrupted, potentially contributes to division defects in cancer.


Asunto(s)
Proteína de la Poliposis Adenomatosa del Colon/metabolismo , División Celular Asimétrica , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citología , Huso Acromático , Animales , Sistemas CRISPR-Cas , Proteínas de Ciclo Celular/metabolismo , Polaridad Celular , Centrosoma/metabolismo , Simulación por Computador , Citoplasma/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Microtúbulos/metabolismo , Modelos Teóricos , Mutación , Interferencia de ARN , Estrés Mecánico , Tubulina (Proteína)/metabolismo , Cigoto
11.
12.
Elife ; 62017 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-28677525

RESUMEN

A core principle of nervous system organization is the diversification of neuron classes into subclasses that share large sets of features but differ in select traits. We describe here a molecular mechanism necessary for motor neurons to acquire subclass-specific traits in the nematode Caenorhabditis elegans. Cholinergic motor neuron classes of the ventral nerve cord can be subdivided into subclasses along the anterior-posterior (A-P) axis based on synaptic connectivity patterns and molecular features. The conserved COE-type terminal selector UNC-3 not only controls the expression of traits shared by all members of a neuron class, but is also required for subclass-specific traits expressed along the A-P axis. UNC-3, which is not regionally restricted, requires region-specific cofactors in the form of Hox proteins to co-activate subclass-specific effector genes in post-mitotic motor neurons. This intersectional gene regulatory principle for neuronal subclass diversification may be conserved from nematodes to mice.


Asunto(s)
Caenorhabditis elegans/embriología , Diferenciación Celular , Regulación del Desarrollo de la Expresión Génica , Neuronas Motoras/fisiología , Animales , Variación Biológica Poblacional , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Homeodominio/metabolismo , Ratones , Factores de Transcripción/metabolismo
13.
Nat Commun ; 7: 11689, 2016 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-27229621

RESUMEN

The accumulation of protein aggregates is a common pathological hallmark of many neurodegenerative diseases. However, we do not fully understand how aggregates are formed or the complex network of chaperones, proteasomes and other regulatory factors involved in their clearance. Here, we report a chemically controllable fluorescent protein that enables us to rapidly produce small aggregates inside living cells on the order of seconds, as well as monitor the movement and coalescence of individual aggregates into larger structures. This method can be applied to diverse experimental systems, including live animals, and may prove valuable for understanding cellular responses and diseases associated with protein aggregates.


Asunto(s)
Proteínas Fluorescentes Verdes/metabolismo , Agregado de Proteínas , Agregación Patológica de Proteínas , Proteína 1A de Unión a Tacrolimus/metabolismo , Animales , Sitios de Unión/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Línea Celular Tumoral , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/genética , Células HEK293 , Humanos , Ratones , Microscopía Confocal , Microscopía Fluorescente , Células 3T3 NIH , Proteína 1A de Unión a Tacrolimus/química , Proteína 1A de Unión a Tacrolimus/genética , Imagen de Lapso de Tiempo/métodos
14.
Cell Rep ; 5(2): 389-96, 2013 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-24139806

RESUMEN

Gradients of topographic cues play essential roles in the organization of sensory systems by guiding axonal growth cones. Little is known about whether there are additional mechanisms for precise topographic mapping of synaptic connections. Whereas the C. elegans DA8 and DA9 neurons have similar axonal trajectories, their synapses are positioned in distinct but adjacent domains in the anterior-posterior axis. We found that two Wnts, LIN-44 and EGL-20, are responsible for this spatial organization of synapses. Both Wnts form putative posterior-high, anterior-low gradients. The posteriorly expressed LIN-44 inhibits synapse formation in both DA9 and DA8, and creates a synapse-free domain on both axons via LIN-17 /Frizzled. EGL-20, a more anteriorly expressed Wnt, inhibits synapse formation through MIG-1/Frizzled, which is expressed in DA8 but not in DA9. The Wnt-Frizzled specificity and selective Frizzled expression dictate the stereotyped, topographic positioning of synapses between these two neurons.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Glicoproteínas/metabolismo , Sinapsis/metabolismo , Animales , Axones/metabolismo , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Receptores Frizzled/genética , Receptores Frizzled/metabolismo , Glicoproteínas/genética , Microscopía Confocal , Mutación , Neuronas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Sinapsis/patología , Proteínas Wnt
15.
Neuron ; 77(4): 655-66, 2013 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-23439119

RESUMEN

VIDEO ABSTRACT: Cellular interactions between neighboring axons are essential for global topographic map formation. Here we show that axonal interactions also precisely instruct the location of synapses. Motoneurons form en passant synapses in Caenorhabditis elegans. Although axons from the same neuron class significantly overlap, each neuron innervates a unique and tiled segment of the muscle field by restricting its synapses to a distinct subaxonal domain-a phenomenon we term synaptic tiling. Using DA8 and DA9 motoneurons, we found that the synaptic tiling requires the PlexinA4 homolog, PLX-1, and two transmembrane semaphorins. In the plexin or semaphorin mutants, synaptic domains from both neurons expand and overlap with each other without guidance defects. In a semaphorin-dependent manner, PLX-1 is concentrated at the synapse-free axonal segment, delineating the tiling border. Furthermore, plexin inhibits presynapse formation by suppressing synaptic F-actin through its cytoplasmic GTPase-activating protein (GAP) domain. Hence, contact-dependent, intra-axonal plexin signaling specifies synaptic circuits by inhibiting synapse formation at the subcellular loci.


Asunto(s)
Axones/metabolismo , Caenorhabditis elegans/metabolismo , Neuronas/metabolismo , Semaforinas/metabolismo , Sinapsis/metabolismo , Actinas/metabolismo , Animales , Caenorhabditis elegans/genética , Moléculas de Adhesión Celular/metabolismo , Mutación/genética , Proteínas del Tejido Nervioso/metabolismo , Transducción de Señal/fisiología
16.
Cell ; 146(6): 942-54, 2011 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-21925317

RESUMEN

Extrinsic signals received by a cell can induce remodeling of the cytoskeleton, but the downstream effects of cytoskeletal changes on gene expression have not been well studied. Here, we show that during telophase of an asymmetric division in C. elegans, extrinsic Wnt signaling modulates spindle structures through APR-1/APC, which in turn promotes asymmetrical nuclear localization of WRM-1/ß-catenin and POP-1/TCF. APR-1 that localized asymmetrically along the cortex established asymmetric distribution of astral microtubules, with more microtubules found on the anterior side. Perturbation of the Wnt signaling pathway altered this microtubule asymmetry and led to changes in nuclear WRM-1 asymmetry, gene expression, and cell-fate determination. Direct manipulation of spindle asymmetry by laser irradiation altered the asymmetric distribution of nuclear WRM-1. Moreover, laser manipulation of the spindles rescued defects in nuclear POP-1 asymmetry in wnt mutants. Our results reveal a mechanism in which the nuclear localization of proteins is regulated through the modulation of microtubules.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citología , Caenorhabditis elegans/metabolismo , Proteínas del Citoesqueleto/metabolismo , Transducción de Señal , Proteínas Wnt/metabolismo , Animales , Caenorhabditis elegans/embriología , Núcleo Celular/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Huso Acromático , beta Catenina/metabolismo
17.
Development ; 138(19): 4255-65, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21852394

RESUMEN

Wnt target gene activation in C. elegans requires simultaneous elevation of ß-catenin/SYS-1 and reduction of TCF/POP-1 nuclear levels within the same signal-responsive cell. SYS-1 binds to the conserved N-terminal ß-catenin-binding domain (CBD) of POP-1 and functions as a transcriptional co-activator. Phosphorylation of POP-1 by LIT-1, the C. elegans Nemo-like kinase homolog, promotes POP-1 nuclear export and is the main mechanism by which POP-1 nuclear levels are lowered. We present a mechanism whereby SYS-1 and POP-1 nuclear levels are regulated in opposite directions, despite the fact that the two proteins physically interact. We show that the C terminus of POP-1 is essential for LIT-1 phosphorylation and is specifically bound by the diverged ß-catenin WRM-1. WRM-1 does not bind to the CBD of POP-1, nor does SYS-1 bind to the C-terminal domain. Furthermore, binding of WRM-1 to the POP-1 C terminus is mutually inhibitory with SYS-1 binding at the CBD. Computer modeling provides a structural explanation for the specificity in WRM-1 and SYS-1 binding to POP-1. Finally, WRM-1 exhibits two independent and distinct molecular functions that are novel for ß-catenins: WRM-1 serves both as the substrate-binding subunit and an obligate regulatory subunit for the LIT-1 kinase. Mutual inhibitory binding would result in two populations of POP-1: one bound by WRM-1 that is LIT-1 phosphorylated and exported from the nucleus, and another, bound by SYS-1, that remains in the nucleus and transcriptionally activates Wnt target genes. These studies could provide novel insights into cancers arising from aberrant Wnt activation.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Proteínas del Citoesqueleto/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas del Grupo de Alta Movilidad/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Factores de Transcripción/metabolismo , beta Catenina/biosíntesis , Secuencia de Aminoácidos , Animales , Tipificación del Cuerpo , Caenorhabditis elegans , Núcleo Celular/metabolismo , Proteínas Fluorescentes Verdes/química , Células HeLa , Humanos , Modelos Biológicos , Datos de Secuencia Molecular , Fosforilación , Unión Proteica , Homología de Secuencia de Aminoácido , beta Catenina/química
18.
BMC Plant Biol ; 11: 2, 2011 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-21205321

RESUMEN

BACKGROUND: Alloplasmic wheat lines with Aegilops crassa cytoplasm often show homeotic conversion of stamens into pistils under long-day conditions. In the pistillody-exhibiting florets, an ectopic ovule is formed within the transformed stamens, and female sterility is also observed because of abnormal integument development. RESULTS: In this study, four wheat Bell1-like homeobox (BLH) genes were isolated and named WBLH1 to WBLH4. WBLH1/WBLH3/WBLH4 expression was observed in the basal boundary region of the ovary in both normal pistils and transformed stamens. WBLH2 was also strongly expressed in integuments not only of normal ovules in pistils but also of the ectopic ovules in transformed stamens, and the WBLH2 expression pattern in the sterile pistils seemed to be identical to that in normal ovules of fertile pistils. In addition, WBLH1 and WBLH3 showed interactions with the three wheat KNOX proteins through the BEL domain. WBLH2, however, formed a complex with wheat KNOTTED1 and ROUGH SHEATH1 orthologs through SKY and BEL domains, but not with a wheat LIGULELESS4 ortholog. CONCLUSIONS: Expression of the four WBLH genes is evident in reproductive organs including pistils and transformed stamens and is independent from female sterility in alloplasmic wheat lines with Ae. crassa cytoplasm. KNOX-BLH interaction was conserved among various plant species, indicating the significance of KNOX-BLH complex formation in wheat developmental processes. The functional features of WBLH2 are likely to be distinct from other BLH gene functions in wheat development.


Asunto(s)
Cruzamientos Genéticos , Citoplasma/genética , Flores/genética , Genes Homeobox/genética , Genes de Plantas/genética , Poaceae/genética , Triticum/genética , Secuencia de Aminoácidos , Secuencia de Bases , Cromosomas de las Plantas/genética , Clonación Molecular , Flores/citología , Dosificación de Gen/genética , Regulación de la Expresión Génica de las Plantas , Datos de Secuencia Molecular , Fotoperiodo , Infertilidad Vegetal/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Unión Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Alineación de Secuencia , Eliminación de Secuencia , Técnicas del Sistema de Dos Híbridos
19.
Dev Genes Evol ; 219(4): 175-87, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19255779

RESUMEN

Homeotic transformation of stamens into pistil-like structures, called pistillody, has been reported in some alloplasmic common wheat lines with Aegilops crassa cytoplasm. An alloplasmic line of Chinese Spring ditelosomic 7BS (CSdt7BS) with Ae. crassa cytoplasm lacking the long arm of the chromosome 7B shows pistillody, and the pistils and transformed stamens are sterile due to abnormal ovule development. To elucidate the molecular mechanism of the ovule abnormality, we compared the expression profiles of floral organs between euplasmic and alloplasmic CSdt7BS lines. Two differential display methods of mRNA profiling demonstrated that Ae. crassa cytoplasm largely affects nuclear gene expression profiles of common wheat. Of the differentially expressed genes, a wheat AINTEGUMENTA (ANT) homolog, WANT-1, was preferentially expressed in pistils but not in stamens, and accumulation of the transcript was limited to ovule primordia at the floral organ development stage. In alloplasmic wheat, WANT-1 expression was patchy and weak at the ovule-development stages. On the other hand, no significant difference in gene expression patterns of wheat AGAMOUS (AG) homologs (WAG-1 and WAG-2) was observed between fertile and sterile pistils. These results indicated that alteration of gene expression after initiation of ovule primordia results in abnormal ovule development, and that the aberrant ovule formation is at least partly associated with the weak expression of WANT-1 around ovule primordia in alloplasmic wheat with Ae. crassa cytoplasm.


Asunto(s)
Citoplasma/genética , Regulación de la Expresión Génica de las Plantas , Poaceae/citología , Triticum/anatomía & histología , Triticum/genética , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Núcleo Celular/genética , Flores/anatomía & histología , Poaceae/anatomía & histología , Poaceae/genética , Técnica del ADN Polimorfo Amplificado Aleatorio , Triticum/citología , Triticum/embriología
20.
Trends Cell Biol ; 17(10): 465-73, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17919911

RESUMEN

In various organisms, cells divide asymmetrically to produce distinct daughter cells. In the nematode Caenorhabditis elegans, asymmetric division is controlled by the asymmetric activity of a Wnt signaling pathway (the Wnt/beta-catenin asymmetry pathway). In this process, two specialized beta-catenin homologs have crucial roles in the transmission of Wnt signals to the asymmetric activity of a T-cell factor (TCF)-type transcription factor, POP-1, in the daughter cells. One beta-catenin homolog regulates the distinct nuclear level of POP-1, and the other functions as a coactivator of POP-1. Both beta-catenins localize asymmetrically in the daughter nuclei using different mechanisms. The recent discovery of reiterative nuclear asymmetries of a highly conserved beta-catenin in an annelid suggests that similar molecular mechanisms might regulate asymmetric cell divisions in other organisms.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , División Celular , Transducción de Señal , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Polaridad Celular , Proteínas del Citoesqueleto/metabolismo , Humanos , Ribonucleoproteínas/metabolismo , Factores de Transcripción TCF/metabolismo , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA