Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(17)2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39275571

RESUMEN

In recent years, with the widespread application of indoor inspection robots, high-precision, robust environmental perception has become essential for robotic mapping. Addressing the issues of visual-inertial estimation inaccuracies due to redundant pose degrees of freedom and accelerometer drift during the planar motion of mobile robots in indoor environments, we propose a visual SLAM perception method that integrates wheel odometry information. First, the robot's body pose is parameterized in SE(2) and the corresponding camera pose is parameterized in SE(3). On this basis, we derive the visual constraint residuals and their Jacobian matrices for reprojection observations using the camera projection model. We employ the concept of pre-integration to derive pose-constraint residuals and their Jacobian matrices and utilize marginalization theory to derive the relative pose residuals and their Jacobians for loop closure constraints. This approach solves the nonlinear optimization problem to obtain the optimal pose and landmark points of the ground-moving robot. A comparison with the ORBSLAM3 algorithm reveals that, in the recorded indoor environment datasets, the proposed algorithm demonstrates significantly higher perception accuracy, with root mean square error (RMSE) improvements of 89.2% in translation and 98.5% in rotation for absolute trajectory error (ATE). The overall trajectory localization accuracy ranges between 5 and 17 cm, validating the effectiveness of the proposed algorithm. These findings can be applied to preliminary mapping for the autonomous navigation of indoor mobile robots and serve as a basis for path planning based on the mapping results.

2.
Front Bioeng Biotechnol ; 11: 1223831, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37520296

RESUMEN

Introduction: The lower limb exoskeleton rehabilitation robot should perform gait planning based on the patient's motor intention and training status and provide multimodal and robust control schemes in the control strategy to enhance patient participation. Methods: This paper proposes an adaptive particle swarm optimization admittance control algorithm (APSOAC), which adaptively optimizes the weights and learning factors of the PSO algorithm to avoid the problem of particle swarm falling into local optimal points. The proposed improved adaptive particle swarm algorithm adjusts the stiffness and damping parameters of the admittance control online to reduce the interaction force between the patient and the robot and adaptively plans the patient's desired gait profile. In addition, this study proposes a dual RBF neural network adaptive sliding mode controller (DRNNASMC) to track the gait profile, compensate for frictional forces and external perturbations generated in the human-robot interaction using the RBF network, calculate the required moments for each joint motor based on the lower limb exoskeleton dynamics model, and perform stability analysis based on the Lyapunov theory. Results and discussion: Finally, the efficiency of the APSOAC and DRNNASMC algorithms is demonstrated by active and passive walking experiments with three healthy subjects, respectively.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA