Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Alzheimers Dement ; 20(2): 890-903, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37817376

RESUMEN

INTRODUCTION: Chronic hypertension increases the risk of vascular cognitive impairment (VCI) by ∼60%; however, how hypertension affects the vasculature of the hippocampus remains unclear but could contribute to VCI. METHODS: Memory, hippocampal perfusion, and hippocampal arteriole (HA) function were investigated in male Wistar rats or spontaneously hypertensive rats (SHR) in early (4 to 5 months old), mid (8 to 9 months old), or late adulthood (14 to 15 months old). SHR in late adulthood were chronically treated with captopril (angiotensin converting enzyme inhibitor) or apocynin (antioxidant) to investigate the mechanisms by which hypertension contributes to VCI. RESULTS: Impaired memory in SHR in late adulthood was associated with HA endothelial dysfunction, hyperconstriction, and ∼50% reduction in hippocampal blood flow. Captopril, but not apocynin, improved HA function, restored perfusion, and rescued memory function in aged SHR. DISCUSSION: Hippocampal vascular dysfunction contributes to hypertension-induced memory decline through angiotensin II signaling, highlighting the therapeutic potential of HAs in protecting neurocognitive health later in life. HIGHLIGHTS: Vascular dysfunction in the hippocampus contributes to vascular cognitive impairment. Memory declines with age during chronic hypertension. Angiotensin II causes endothelial dysfunction in the hippocampus in hypertension. Angiotensin II-mediated hippocampal arteriole dysfunction reduces blood flow. Vascular dysfunction in the hippocampus impairs perfusion and memory function.


Asunto(s)
Disfunción Cognitiva , Hipertensión , Ratas , Masculino , Animales , Captopril/farmacología , Captopril/uso terapéutico , Angiotensina II/metabolismo , Angiotensina II/farmacología , Ratas Wistar , Hipertensión/complicaciones , Ratas Endogámicas SHR , Hipocampo/metabolismo , Disfunción Cognitiva/complicaciones , Presión Sanguínea
2.
Sensors (Basel) ; 23(5)2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36904695

RESUMEN

The use of mobile ultraviolet-C (UV-C) disinfection devices for the decontamination of surfaces in hospitals and other settings has increased dramatically in recent years. The efficacy of these devices relies on the UV-C dose they deliver to surfaces. This dose is dependent on the room layout, the shadowing, the position of the UV-C source, lamp degradation, humidity and other factors, making it challenging to estimate. Furthermore, since UV-C exposure is regulated, personnel in the room must not be exposed to UV-C doses beyond occupational limits. We proposed a systematic method to monitor the UV-C dose administered to surfaces during a robotic disinfection procedure. This was achieved using a distributed network of wireless UV-C sensors that provide real-time measurements to a robotic platform and operator. These sensors were validated for their linearity and cosine response. To ensure operators could safely remain in the area, a wearable sensor was incorporated to monitor the UV-C exposure of an operator, and it provided an audible warning upon exposure and, if necessary, ceased the UV-C emission from the robot. Enhanced disinfection procedures could then be conducted as items in the room could be rearranged during the procedure to maximise the UV-C fluence delivered to otherwise inaccessible surfaces while allowing UVC disinfection to occur in parallel with traditional cleaning. The system was tested for the terminal disinfection of a hospital ward. During the procedure, the robot was manually positioned in the room by the operator repeatedly, who then used feedback from the sensors to ensure the desired UV-C dose was achieved while also conducting other cleaning tasks. An analysis verified the practicality of this disinfection methodology while highlighting factors which could affect its adoption.


Asunto(s)
Desinfección , Habitaciones de Pacientes , Desinfección/métodos , Rayos Ultravioleta , Hospitales
3.
Biomed Phys Eng Express ; 8(5)2022 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-35790146

RESUMEN

Objective.New technologies, including robots comprising germ-killing UV lamps, are increasingly being used to decontaminate hospitals and prevent the spread of COVID-19 and other superbugs. Existing approaches for modelling the irradiance field surrounding mobile UV disinfection robots are limited by their inability to capture the physics of their bespoke geometrical configurations and do not account for reflections. The goal of this research was to extend current models to address these limitations and to subsequently verify these models using empirically collected data.Approach.Two distinct parametric models were developed to describe a multi-lamp robotic UV system and adapted to incorporate the effects of irradiance amplification from the device's reflectors. The first model was derived from electromagnetic wave theory while the second was derived from conservation of energy and diffusion methods. Both models were tuned using data from empirical testing of an existing UV robot, and then validated using an independent set of measurements from the same device.Results.For each parameter, predictions made using the conservation of energy method were found to closely approximate the empirical data, offering more accurate estimates of the 3D irradiance field than the electromagnetic wave theory model.Significance.The versatility of the proposed method ensures that it can be easily adapted to different embodiments, providing a systematic way for researchers to develop accurate numerical models of custom UV robots, which may be used to inform deployment and/or to improve the accuracy of virtual simulation.


Asunto(s)
COVID-19 , Robótica , Desinfección/métodos , Humanos , Rayos Ultravioleta
4.
Healthc Technol Lett ; 9(3): 25-33, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35662749

RESUMEN

Ultraviolet germicidal irradiation (UVGI) technologies have emerged as a promising alternative to biocides as a means of surface disinfection in hospitals and other healthcare settings. This paper reviews the methods used by researchers and clinicians in deploying and evaluating the efficacy of UVGI technology. The type of UVGI technology used, the clinical setting where the device was deployed, and the methods of environmental testing that the researchers followed are investigated. The findings suggest that clinical UVGI deployments have been growing steadily since 2010 and have increased dramatically since the start of the COVID-19 pandemic. Hardware platforms and operating procedures vary considerably between studies. Most studies measure efficacy of the technology based on the objective measurement of bacterial bioburden reduction; however, studies conducted over longer durations have examined the impact of UVGI on the reduction of healthcare associated infections (HCAIs). Future trends include increased automation and the use of UVGI technologies that are safer for use around people. Although existing evidence seems to support the efficacy of UVGI as a tool capable of reducing HCAIs, more research is needed to measure the magnitude of these effects and to establish recommended best practices.

5.
Front Physiol ; 13: 924908, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35733984

RESUMEN

Preeclampsia is a hypertensive disorder of pregnancy that causes significant, long term cardiovascular effects for both the mother and offspring. A previous study demonstrated that middle cerebral arteries in offspring from an experimental rat model of preeclampsia were smaller, stiffer, and did not enlarge over the course of maturation, suggesting potential hemodynamic alterations in these offspring. Here we investigated the effect of experimental preeclampsia on cerebral blood flow autoregulation in juvenile and adult offspring that were born from normal pregnant or experimentally preeclamptic rats. Relative cerebral blood flow was measured using laser Doppler flowmetry, and cerebral blood flow autoregulation curves were constructed by raising blood pressure and controlled hemorrhage to lower blood pressure. Immunohistochemistry was used to assess middle cerebral artery size. Heart rate and blood pressure were measured in awake adult offspring using implanted radiotelemetry. Serum epinephrine was measured using enzyme-linked immunosorbent assay. Offspring from both groups showed maturation of cerebral blood flow autoregulation as offspring aged from juvenile to adulthood as demonstrated by the wider autoregulatory plateau. Experimental preeclampsia did not affect cerebral blood flow autoregulation in juvenile offspring, and it had no effect on cerebral blood flow autoregulation in adult offspring over the lower range of blood pressures. However, experimental preeclampsia caused a right shift in the upper range of blood pressures in adult offspring (compared to normal pregnant). Structurally, middle cerebral arteries from normal pregnant offspring demonstrated growth with aging, while middle cerebral arteries from experimentally preeclamptic offspring did not, and by adulthood normal pregnant offspring had significantly larger middle cerebral arteries. Middle cerebral artery lumen diameters did not significantly change as offspring aged. Serum epinephrine was elevated in juvenile experimentally preeclamptic offspring, and a greater degree of hemorrhage was required to induce hypotension, suggesting increased sympathetic activity. Finally, despite no evidence of increased sympathetic activity, adult experimentally preeclamptic offspring were found to have persistently higher heart rate. These results demonstrate a significant effect of experimental preeclampsia on the upper range of autoregulation and cerebrovascular structure in juvenile and adult offspring that could have an important influence on brain perfusion under conditions of hypo and/or hypertension.

6.
Am J Infect Control ; 50(8): 947-953, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35065149

RESUMEN

BACKGROUND: Ultraviolet germicidal irradiation (UVGI) technologies have emerged as a promising adjunct to manual cleaning, however, their potential to shorten cleaning times remains unexplored. METHODS: A <10-minute disinfection procedure was developed using a robotic UVGI platform. The efficacy and time to perform the UVGI procedure in a CT scan treatment room was compared with current protocols involving manual disinfection using biocides. For each intervention, environmental samples were taken at 12 locations in the room before and after disinfection on seven distinct occasions. RESULTS: The mean UVC dose at each sample location was found to be 13.01 ± 4.36 mJ/cm2, which exceeded published UVC thresholds for achieving log reductions of many common pathogens. Significant reductions in microbial burden were measured after both UVGI (P≤.001) and manual cleaning (P≤.05) conditions, with the UVGI procedure revealing the largest effect size (r = 0.603). DISCUSSION: These results support the hypothesis that automated deployments of UVGI technology can lead to germicidal performance that is comparable with, and potentially better than, current manual cleaning practices. CONCLUSIONS: Our findings provide early evidence that the incorporation of automated UVGI procedures into cleaning workflow could reduce turnaround times in radiology, and potentially other hospital settings.


Asunto(s)
Radiología , Robótica , Desinfección/métodos , Hospitales , Humanos , Rayos Ultravioleta
7.
Sensors (Basel) ; 21(24)2021 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-34960434

RESUMEN

A robot's ability to grasp moving objects depends on the availability of real-time sensor data in both the far-field and near-field of the gripper. This research investigates the potential contribution of tactile sensing to a task of grasping an object in motion. It was hypothesised that combining tactile sensor data with a reactive grasping strategy could improve its robustness to prediction errors, leading to a better, more adaptive performance. Using a two-finger gripper, we evaluated the performance of two algorithms to grasp a ball rolling on a horizontal plane at a range of speeds and gripper contact points. The first approach involved an adaptive grasping strategy initiated by tactile sensors in the fingers. The second strategy initiated the grasp based on a prediction of the position of the object relative to the gripper, and provided a proxy to a vision-based object tracking system. It was found that the integration of tactile sensor feedback resulted in a higher observed grasp robustness, especially when the gripper-ball contact point was displaced from the centre of the gripper. These findings demonstrate the performance gains that can be attained by incorporating near-field sensor data into the grasp strategy and motivate further research on how this strategy might be expanded for use in different manipulator designs and in more complex grasp scenarios.


Asunto(s)
Robótica , Percepción del Tacto , Dedos , Fuerza de la Mano , Tacto
8.
Front Robot AI ; 7: 590306, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33501347

RESUMEN

The importance of infection control procedures in hospital radiology departments has become increasingly apparent in recent months as the impact of COVID-19 has spread across the world. Existing disinfectant procedures that rely on the manual application of chemical-based disinfectants are time consuming, resource intensive and prone to high degrees of human error. Alternative non-touch disinfection methods, such as Ultraviolet Germicidal Irradiation (UVGI), have the potential to overcome many of the limitations of existing approaches while significantly improving workflow and equipment utilization. The aim of this research was to investigate the germicidal effectiveness and the practical feasibility of using a robotic UVGI device for disinfecting surfaces in a radiology setting. We present the design of a robotic UVGI platform that can be deployed alongside human workers and can operate autonomously within cramped rooms, thereby addressing two important requirements necessary for integrating the technology within radiology settings. In one hospital, we conducted experiments in a CT and X-ray room. In a second hospital, we investigated the germicidal performance of the robot when deployed to disinfect a CT room in <15 minutes, a period which is estimated to be 2-4 times faster than current practice for disinfecting rooms after infectious (or potentially infectious) patients. Findings from both test sites show that UVGI successfully inactivated all of measurable microbial load on 22 out of 24 surfaces. On the remaining two surfaces, UVGI reduced the microbial load by 84 and 95%, respectively. The study also exposes some of the challenges of manually disinfecting radiology suites, revealing high concentrations of microbial load in hard-to-reach places. Our findings provide compelling evidence that UVGI can effectively inactivate microbes on commonly touched surfaces in radiology suites, even if they were only exposed to relatively short bursts of irradiation. Despite the short irradiation period, we demonstrated the ability to inactivate microbes with more complex cell structures and requiring higher UV inactivation energies than SARS-CoV-2, thus indicating high likelihood of effectiveness against coronavirus.

9.
Disabil Rehabil Assist Technol ; 13(3): 293-304, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28537814

RESUMEN

PURPOSE: Multipurpose robots that can perform a range of useful tasks have the potential to increase the quality of life for many people living with disabilities. Owing to factors such as high system complexity, as-yet unresolved research questions and current technology limitations, there is a need for effective strategies to coordinate the development process. METHOD: Integrating established methodologies based on human-centred design and universal design, a framework was formulated to coordinate the robot design process over successive iterations of prototype development. RESULTS: An account is given of how the framework was practically applied to the problem of developing a personal service robot. Application of the framework led to the formation of several design goals which addressed a wide range of identified user needs. The resultant prototype solution, which consisted of several component elements, succeeded in demonstrating the performance stipulated by all of the proposed metrics. CONCLUSIONS: Application of the framework resulted in the development of a complex prototype that addressed many aspects of the functional and usability requirements of a personal service robot. Following the process led to several important insights which directly benefit the development of subsequent prototypes. Implications for Rehabilitation This research shows how universal design might be used to formulate usability requirements for assistive service robots. A framework is presented that guides the process of designing service robots in a human-centred way. Through practical application of the framework, a prototype robot system that addressed a range of identified user needs was developed.


Asunto(s)
Personas con Discapacidad/rehabilitación , Diseño de Equipo/métodos , Robótica , Dispositivos de Autoayuda , Actividades Cotidianas , Humanos , Calidad de Vida , Interfaz Usuario-Computador
10.
Appl Ergon ; 65: 23-32, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28802443

RESUMEN

For robots to successfully integrate into everyday life, it is important that they can be effectively controlled by laypeople. However, the task of manually controlling mobile robots can be challenging due to demanding cognitive and sensorimotor requirements. This research explores the effect that the built environment has on the manual control of domestic service robots. In this study, a virtual reality simulation of a domestic robot control scenario was developed. The performance of fifty novice users was evaluated, and their subjective experiences recorded through questionnaires. Through quantitative and qualitative analysis, it was found that untrained operators frequently perform poorly at navigation-based robot control tasks. The study found that passing through doorways accounted for the largest number of collisions, and was consistently identified as a very difficult operation to perform. These findings suggest that homes and other human-orientated settings present significant challenges to robot control.


Asunto(s)
Planificación Ambiental , Sistemas Hombre-Máquina , Robótica , Análisis y Desempeño de Tareas , Adolescente , Adulto , Anciano , Ergonomía , Femenino , Vivienda , Humanos , Diseño Interior y Mobiliario , Masculino , Persona de Mediana Edad , Navegación Espacial , Encuestas y Cuestionarios , Juegos de Video , Realidad Virtual , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA