Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
mBio ; 12(3): e0076021, 2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34182772

RESUMEN

During its complex life cycle, the malaria parasite survives dramatic environmental stresses, including large temperature shifts. Protein prenylation is required during asexual replication of Plasmodium falciparum, and the canonical heat shock protein 40 protein (HSP40; PF3D7_1437900) is posttranslationally modified with a 15-carbon farnesyl isoprenyl group. In other organisms, farnesylation of Hsp40 orthologs controls their localization and function in resisting environmental stress. In this work, we find that plastidial isopentenyl pyrophosphate (IPP) synthesis and protein farnesylation are required for malaria parasite survival after cold and heat shock. Furthermore, loss of HSP40 farnesylation alters its membrane attachment and interaction with proteins in essential pathways in the parasite. Together, this work reveals that farnesylation is essential for parasite survival during temperature stress. Farnesylation of HSP40 may promote thermotolerance by guiding distinct chaperone-client protein interactions.


Asunto(s)
Proteínas del Choque Térmico HSP40/metabolismo , Plasmodium falciparum/metabolismo , Prenilación de Proteína , Termotolerancia , Eritrocitos/parasitología , Proteínas del Choque Térmico HSP40/genética , Respuesta al Choque Térmico , Hemiterpenos/metabolismo , Interacciones Huésped-Parásitos , Humanos , Estadios del Ciclo de Vida , Compuestos Organofosforados/metabolismo , Plasmodium falciparum/genética , Proteínas Protozoarias/genética
2.
F1000Res ; 72018.
Artículo en Inglés | MEDLINE | ID: mdl-30135714

RESUMEN

Malaria remains a significant contributor to global human mortality, and roughly half the world's population is at risk for infection with Plasmodium spp. parasites. Aggressive control measures have reduced the global prevalence of malaria significantly over the past decade. However, resistance to available antimalarials continues to spread, including resistance to the widely used artemisinin-based combination therapies. Novel antimalarial compounds and therapeutic targets are greatly needed. This review will briefly discuss several promising current antimalarial development projects, including artefenomel, ferroquine, cipargamin, SJ733, KAF156, MMV048, and tafenoquine. In addition, we describe recent large-scale genetic and resistance screens that have been instrumental in target discovery. Finally, we highlight new antimalarial targets, which include essential transporters and proteases. These emerging antimalarial compounds and therapeutic targets have the potential to overcome multi-drug resistance in ongoing efforts toward malaria elimination.


Asunto(s)
Antimaláricos/farmacología , Resistencia a Medicamentos/efectos de los fármacos , Terapia Molecular Dirigida/métodos , Parásitos/efectos de los fármacos , Parásitos/metabolismo , Animales , Descubrimiento de Drogas , Humanos
3.
J Neurosci ; 36(29): 7628-39, 2016 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-27445141

RESUMEN

UNLABELLED: Myelin, which ensheaths and insulates axons, is a specialized membrane highly enriched with cholesterol. During myelin formation, cholesterol influences membrane fluidity, associates with myelin proteins such as myelin proteolipid protein, and assembles lipid-rich microdomains within membranes. Surprisingly, cholesterol also is required by oligodendrocytes, glial cells that make myelin, to express myelin genes and wrap axons. How cholesterol mediates these distinct features of oligodendrocyte development is not known. One possibility is that cholesterol promotes myelination by facilitating signal transduction within the cell, because lipid-rich microdomains function as assembly points for signaling molecules. Signaling cascades that localize to cholesterol-rich regions of the plasma membrane include the PI3K/Akt pathway, which acts upstream of mechanistic target of rapamycin (mTOR), a major driver of myelination. Through manipulation of cholesterol levels and PI3K/Akt/mTOR signaling in zebrafish, we discovered that mTOR kinase activity in oligodendrocytes requires cholesterol. Drawing on a combination of pharmacological and rescue experiments, we provide evidence that mTOR kinase activity is required for cholesterol-mediated myelin gene expression. On the other hand, cholesterol-dependent axon ensheathment is mediated by Akt signaling, independent of mTOR kinase activity. Our data reveal that cholesterol-dependent myelin gene expression and axon ensheathment are facilitated by distinct signaling cascades downstream of Akt. Because mTOR promotes cholesterol synthesis, our data raise the possibility that cholesterol synthesis and mTOR signaling engage in positive feedback to promote the formation of myelin membrane. SIGNIFICANCE STATEMENT: The speed of electrical impulse movement through axons is increased by myelin, a specialized, cholesterol-rich glial cell membrane that tightly wraps axons. During development, myelin membrane grows dramatically, suggesting a significant demand on mechanisms that produce and assemble myelin components, while it spirally wraps axons. Our studies indicate that cholesterol is necessary for both myelin growth and axon wrapping. Specifically, we found that cholesterol facilitates signaling mediated by the PI3K/Akt/mTOR pathway, a powerful driver of myelination. Because mTOR promotes the expression of genes necessary for cholesterol synthesis, cholesterol formation and PI3K/Akt/mTOR signaling might function as a feedforward mechanism to produce the large amounts of myelin membrane necessary for axon ensheathment.


Asunto(s)
Axones/fisiología , Colesterol/biosíntesis , Regulación de la Expresión Génica/fisiología , Proteínas de la Mielina/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/fisiología , Animales , Animales Modificados Genéticamente , Colesterol/farmacología , Embrión no Mamífero , Femenino , Regulación de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Inmunosupresores/farmacología , Masculino , Morfolinos/farmacología , Proteínas de la Mielina/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Oligodendroglía/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Transducción de Señal/genética , Sirolimus/farmacología , Serina-Treonina Quinasas TOR , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
4.
J Neurosci ; 34(9): 3402-12, 2014 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-24573296

RESUMEN

Myelin membrane, which ensheaths axons, has an unusually high amount of cholesterol. Cholesterol influences membrane fluidity and assembles lipid-rich microdomains within membranes, and some studies have shown that cholesterol is important for myelination. How cholesterol influences the development and differentiation of oligodendrocytes, glial cells that make myelin, is not known nor is clear whether isoprenoids, which also are products of the cholesterol biosynthetic pathway, contribute to myelination. Through a forward genetic screen in zebrafish we discovered that mutation of hmgcs1, which encodes an enzyme necessary for isoprenoid and cholesterol synthesis, causes oligodendrocyte progenitor cells (OPCs) to migrate past their target axons and to fail to express myelin genes. Drawing on a combination of pharmacological inhibitor and rescue experiments, we provide evidence that isoprenoids and protein prenylation, but not cholesterol, are required in OPCs to halt their migration at target axons. On the other hand, cholesterol, but not isoprenoids, is necessary both for axon ensheathment and myelin gene expression. Our data reveal that different products of the cholesterol biosynthetic pathway have distinct roles in oligodendrocyte development and that they together help to coordinate directed migration, axon wrapping, and gene expression.


Asunto(s)
Axones/fisiología , Movimiento Celular/genética , Colesterol/metabolismo , Hidroximetilglutaril-CoA Sintasa/genética , Mutación/genética , Vaina de Mielina/metabolismo , Oligodendroglía/fisiología , Animales , Animales Modificados Genéticamente , Axones/efectos de los fármacos , Axones/metabolismo , Tipificación del Cuerpo/efectos de los fármacos , Tipificación del Cuerpo/genética , Movimiento Celular/efectos de los fármacos , Movimiento Celular/fisiología , Embrión no Mamífero , Inhibidores Enzimáticos/farmacología , Expresión Génica/efectos de los fármacos , Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Vaina de Mielina/genética , Oligodendroglía/efectos de los fármacos , Médula Espinal/citología , Médula Espinal/embriología , Médula Espinal/metabolismo , Células Madre/efectos de los fármacos , Células Madre/fisiología , Imagen de Lapso de Tiempo , Pez Cebra , Proteínas de Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA