Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
BMC Plant Biol ; 24(1): 743, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39095733

RESUMEN

Soybean is a crucial crop for the Brazilian economy, but it faces challenges from the biotrophic fungus Phakopsora pachyrhizi, which causes Asian Soybean Rust (ASR). In this study, we aimed to identify SNPs associated with resistance within the Rpp1 locus, which is effective against Brazilian ASR populations. We employed GWAS and re-sequencing analyzes to pinpoint SNP markers capable of differentiating between soybean accessions harboring the Rpp1, Rpp1-b and other alternative alleles in the Rpp1 locus and from susceptible soybean cultivars. Seven SNP markers were found to be associated with ASR resistance through GWAS, with three of them defining haplotypes that efficiently distinguished the accessions based on their ASR resistance and source of the Rpp gene. These haplotypes were subsequently validated using a bi-parental population and a diverse set of Rpp sources, demonstrating that the GWAS markers co-segregate with ASR resistance. We then examined the presence of these haplotypes in a diverse set of soybean genomes worldwide, finding a few new potential sources of Rpp1/Rpp1-b. Further genomic sequence analysis revealed nucleotide differences within the genes present in the Rpp1 locus, including the ULP1-NBS-LRR genes, which are potential R gene candidates. These results provide valuable insights into ASR resistance in soybean, thus helping the development of resistant soybean varieties through genetic breeding programs.


Asunto(s)
Alelos , Resistencia a la Enfermedad , Estudio de Asociación del Genoma Completo , Glycine max , Phakopsora pachyrhizi , Enfermedades de las Plantas , Polimorfismo de Nucleótido Simple , Glycine max/genética , Glycine max/microbiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Resistencia a la Enfermedad/genética , Phakopsora pachyrhizi/fisiología , Phakopsora pachyrhizi/genética , Haplotipos , Genes de Plantas , Basidiomycota/fisiología
2.
Mol Breed ; 43(2): 12, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37313128

RESUMEN

Asian soybean rust (ASR), caused by the fungus Phakopsora pachyrhizi, is the main disease affecting soybean in Brazil. This study aimed at investigating and mapping the resistance of the PI 594756 to P. pachyrhizi, by using Bulked Segregant Analysis (BSA). The PI 594756 and the susceptible PI 594891 were crossed and the resulting F2 and F2:3 populations (208 and 1770 plants, respectively) were tested against ASR. Also, these PIs and differential varieties were tested against a panel of monosporic isolates. Plants presenting tan lesions were classified as susceptible (S) while plants presenting reddish-brown (RB) lesions were classified as resistant. DNA bulks were genotyped with Infinium BeadChips and the genomic region identified was further analyzed in the F2 individuals with target GBS (tGBS). PI 594,56 presented a unique resistance profile compared to the differential varieties. The resistance was monogenic dominant; however, it was classified as incompletely dominant when quantitatively studied. Genetic and QTL mapping placed the PI 594756 gene between the genomic region located at 55,863,741 and 56,123,516 bp of chromosome 18. This position is slightly upstream mapping positions of Rpp1 (PI 200492) and Rpp1-b (PI 594538A). Finally, we performed a haplotype analysis in a whole genomic sequencing-SNP database composed of Brazilian historical germplasm and sources of Rpp genes. We found SNPs that successfully differentiated the new PI 594756 allele from Rpp1 and Rpp1-b sources. The haplotype identified can be used as a tool for marker-assisted selection (MAS). Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01358-4.

3.
Nat Commun ; 14(1): 1835, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-37005409

RESUMEN

With >7000 species the order of rust fungi has a disproportionately large impact on agriculture, horticulture, forestry and foreign ecosystems. The infectious spores are typically dikaryotic, a feature unique to fungi in which two haploid nuclei reside in the same cell. A key example is Phakopsora pachyrhizi, the causal agent of Asian soybean rust disease, one of the world's most economically damaging agricultural diseases. Despite P. pachyrhizi's impact, the exceptional size and complexity of its genome prevented generation of an accurate genome assembly. Here, we sequence three independent P. pachyrhizi genomes and uncover a genome up to 1.25 Gb comprising two haplotypes with a transposable element (TE) content of ~93%. We study the incursion and dominant impact of these TEs on the genome and show how they have a key impact on various processes such as host range adaptation, stress responses and genetic plasticity.


Asunto(s)
Basidiomycota , Phakopsora pachyrhizi , Elementos Transponibles de ADN/genética , Glycine max/genética , Glycine max/microbiología , Ecosistema , Basidiomycota/genética , Proliferación Celular
4.
Mol Plant Microbe Interact ; 35(9): 779-790, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35617509

RESUMEN

Asian soybean rust, caused by the fungus Phakopsora pachyrhizi, is one of the most important diseases affecting soybean production in tropical areas. During infection, P. pachyrhizi secretes proteins from haustoria that are transferred into plant cells to promote virulence. To date, only one candidate P. pachyrhizi effector protein has been characterized in detail to understand the mechanism by which it suppresses plant defenses to enhance infection. Here, we aimed to extend understanding of the pathogenic mechanisms of P. pachyrhizi based on the discovery of host proteins that interact with the effector candidate Phapa-7431740. We demonstrated that Phapa-7431740 suppresses pathogen-associated molecular pattern-triggered immunity (PTI) and that it interacts with a soybean glucan endo-1,3-ß-glucosidase (GmßGLU), a pathogenesis-related (PR) protein belonging to the PR-2 family. Structural and phylogenetic characterization of the PR-2 protein family predicted in the soybean genome and comparison to PR-2 family members in Arabidopsis thaliana and cotton, demonstrated that GmßGLU is a type IV ß-1,3-glucanase. Transcriptional profiling during an infection time course showed that the GmßGLU mRNA is highly induced during the initial hours after infection, coinciding with peak of expression of Phapa-7431740. The effector was able to interfere with the activity of GmßGLU in vitro, with a dose-dependent inhibition. Our results suggest that Phapa-7431740 may suppress PTI by interfering with glucan endo-1,3-ß-glucosidase activity. [Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law, 2022.


Asunto(s)
Arabidopsis , Phakopsora pachyrhizi , Arabidopsis/microbiología , Regulación de la Expresión Génica de las Plantas , Glucanos/metabolismo , Interacciones Huésped-Patógeno , Moléculas de Patrón Molecular Asociado a Patógenos/metabolismo , Phakopsora pachyrhizi/metabolismo , Filogenia , Enfermedades de las Plantas/microbiología , ARN Mensajero/metabolismo , Glycine max/microbiología , Virulencia , beta-Glucosidasa/metabolismo
5.
Mol Plant Pathol ; 18(3): 363-377, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27010366

RESUMEN

Asian soybean rust (ASR), caused by the obligate biotrophic fungus Phakopsora pachyrhizi, can cause losses greater than 80%. Despite its economic importance, there is no soybean cultivar with durable ASR resistance. In addition, the P. pachyrhizi genome is not yet available. However, the availability of other rust genomes, as well as the development of sample enrichment strategies and bioinformatics tools, has improved our knowledge of the ASR secretome and its potential effectors. In this context, we used a combination of laser capture microdissection (LCM), RNAseq and a bioinformatics pipeline to identify a total of 36 350 P. pachyrhizi contigs expressed in planta and a predicted secretome of 851 proteins. Some of the predicted secreted proteins had characteristics of candidate effectors: small size, cysteine rich, do not contain PFAM domains (except those associated with pathogenicity) and strongly expressed in planta. A comparative analysis of the predicted secreted proteins present in Pucciniales species identified new members of soybean rust and new Pucciniales- or P. pachyrhizi-specific families (tribes). Members of some families were strongly up-regulated during early infection, starting with initial infection through haustorium formation. Effector candidates selected from two of these families were able to suppress immunity in transient assays, and were localized in the plant cytoplasm and nuclei. These experiments support our bioinformatics predictions and show that these families contain members that have functions consistent with P. pachyrhizi effectors.


Asunto(s)
Proteínas Fúngicas/metabolismo , Metaboloma , Nicotiana/microbiología , Phakopsora pachyrhizi/metabolismo , Secuencia de Aminoácidos , Núcleo Celular/metabolismo , Análisis por Conglomerados , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Perfilación de la Expresión Génica , Ontología de Genes , Metaboloma/genética , Familia de Multigenes , Phakopsora pachyrhizi/genética , Filogenia , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta , Hojas de la Planta/microbiología , Glycine max/microbiología , Nicotiana/inmunología , Transcriptoma/genética
6.
Funct Integr Genomics ; 15(6): 685-96, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26013145

RESUMEN

Asian soybean rust (ASR), caused by the obligate biotrophic fungus Phakopsora pachyrhizi, is one of most important diseases in the soybean (Glycine max (L.) Merr.) agribusiness. The identification and characterization of genes related to plant defense responses to fungal infection are essential to develop ASR-resistant plants. In this work, we describe four soybean genes, GmbZIP62, GmbZIP105, GmbZIPE1, and GmbZIPE2, which encode transcription factors containing a basic leucine zipper (bZIP) domain from two divergent classes, and that are responsive to P. pachyrhizi infection. Molecular phylogenetic analyses demonstrated that these genes encode proteins similar to bZIP factors responsive to pathogens. Yeast transactivation assays showed that only GmbZIP62 has strong transactivation activity in yeast. In addition, three of the bZIP transcription factors analyzed were also differentially expressed by plant defense hormones, and all were differentially expressed by fungal attack, indicating that these proteins might participate in response to ASR infection. The results suggested that these bZIP proteins are part of the plant defense response to P. pachyrhizi infection, by regulating the gene expression related to ASR infection responses. These bZIP genes are potential targets to obtain new soybean genotypes resistant to ASR.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Glycine max/microbiología , Proteínas de Plantas/genética , Factores de Transcripción/genética , Phakopsora pachyrhizi/patogenicidad , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Glycine max/genética , Glycine max/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Dedos de Zinc
7.
Plant Sci ; 229: 32-42, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25443831

RESUMEN

Myb genes constitute one of the largest transcription factor families in the plant kingdom. Soybean MYB transcription factors have been related to the plant response to biotic stresses. Their involvement in response to Phakopsora pachyrhizi infection has been reported by several transcriptional studies. Due to their apparently highly diverse functions, these genes are promising targets for developing crop varieties resistant to diseases. In the present study, the identification and phylogenetic analysis of the soybean R2R3-MYB (GmMYB) transcription factor family was performed and the expression profiles of these genes under biotic stress were determined. GmMYBs were identified from the soybean genome using bioinformatic tools, and their putative functions were determined based on the phylogenetic tree and classified into subfamilies using guides AtMYBs describing known functions. The transcriptional profiles of GmMYBs upon infection with different pathogen were revealed by in vivo and in silico analyses. Selected target genes potentially involved in disease responses were assessed by RT-qPCR after different times of inoculation with P. pachyrhizi using different genetic backgrounds related to resistance genes (Rpp2 and Rpp5). R2R3-MYB transcription factors related to lignin synthesis and genes responsive to chitin were significantly induced in the resistant genotypes.


Asunto(s)
Basidiomycota/fisiología , Resistencia a la Enfermedad/genética , Genoma de Planta , Glycine max/genética , Glycine max/microbiología , Factores de Transcripción/genética , Transcriptoma/genética , Simulación por Computador , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Genotipo , Familia de Multigenes , Filogenia , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Reproducibilidad de los Resultados , Glycine max/inmunología , Factores de Transcripción/metabolismo , Transcripción Genética
8.
BMC Plant Biol ; 14: 236, 2014 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-25201117

RESUMEN

BACKGROUND: Many previous studies have shown that soybean WRKY transcription factors are involved in the plant response to biotic and abiotic stresses. Phakopsora pachyrhizi is the causal agent of Asian Soybean Rust, one of the most important soybean diseases. There are evidences that WRKYs are involved in the resistance of some soybean genotypes against that fungus. The number of WRKY genes already annotated in soybean genome was underrepresented. In the present study, a genome-wide annotation of the soybean WRKY family was carried out and members involved in the response to P. pachyrhizi were identified. RESULTS: As a result of a soybean genomic databases search, 182 WRKY-encoding genes were annotated and 33 putative pseudogenes identified. Genes involved in the response to P. pachyrhizi infection were identified using superSAGE, RNA-Seq of microdissected lesions and microarray experiments. Seventy-five genes were differentially expressed during fungal infection. The expression of eight WRKY genes was validated by RT-qPCR. The expression of these genes in a resistant genotype was earlier and/or stronger compared with a susceptible genotype in response to P. pachyrhizi infection. Soybean somatic embryos were transformed in order to overexpress or silence WRKY genes. Embryos overexpressing a WRKY gene were obtained, but they were unable to convert into plants. When infected with P. pachyrhizi, the leaves of the silenced transgenic line showed a higher number of lesions than the wild-type plants. CONCLUSIONS: The present study reports a genome-wide annotation of soybean WRKY family. The participation of some members in response to P. pachyrhizi infection was demonstrated. The results contribute to the elucidation of gene function and suggest the manipulation of WRKYs as a strategy to increase fungal resistance in soybean plants.


Asunto(s)
Basidiomycota/fisiología , Regulación de la Expresión Génica de las Plantas , Genoma de Planta/genética , Glycine max/fisiología , Interacciones Huésped-Patógeno , Enfermedades de las Plantas/inmunología , Secuencia de Aminoácidos , Secuencia de Consenso , Susceptibilidad a Enfermedades , Perfilación de la Expresión Génica , Silenciador del Gen , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Enfermedades de las Plantas/microbiología , Hojas de la Planta/genética , Hojas de la Planta/inmunología , Hojas de la Planta/microbiología , Hojas de la Planta/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Regeneración , Alineación de Secuencia , Glycine max/genética , Glycine max/inmunología , Glycine max/microbiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transformación Genética
9.
Mol Plant Microbe Interact ; 27(8): 824-34, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24762222

RESUMEN

It has been well established that MPK6 is a positive regulator of defense responses in model plants such as Arabidopsis and tobacco. However, the functional importance of soybean MPK6 in disease resistance has not been investigated. Here, we showed that silencing of GmMPK6 in soybean using virus-induced gene silencing mediated by Bean pod mottle virus (BPMV) caused stunted growth and spontaneous cell death on the leaves, a typical phenotype of activated defense responses. Consistent with this phenotype, expression of pathogenesis-related (PR) genes and the conjugated form of salicylic acid were significantly increased in GmMPK6-silenced plants. As expected, GmMPK6-silenced plants were more resistant to downy mildew and Soybean mosaic virus compared with vector control plants, indicating a negative role of GmMPK6 in disease resistance. Interestingly, overexpression of GmMPK6, either transiently in Nicotiana benthamiana or stably in Arabidopsis, resulted in hypersensitive response (HR)-like cell death. The HR-like cell death was accompanied by increased PR gene expression, suggesting that GmMPK6, like its counterpart in other plant species, also plays a positive role in cell death induction and defense response. Using bimolecular fluorescence complementation analysis, we determined that GmMKK4 might function upstream of GmMPK6 and GmMKK4 could interact with GmMPK6 independent of its phosphorylation status. Taken together, our results indicate that GmMPK6 functions as both repressor and activator in defense responses of soybean.


Asunto(s)
Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas , Glycine max/enzimología , Enfermedades de las Plantas/inmunología , Proteínas de Plantas/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/inmunología , Arabidopsis/fisiología , Muerte Celular , Expresión Génica , Silenciador del Gen , Genes Reporteros , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Peronospora/fisiología , Fenotipo , Enfermedades de las Plantas/microbiología , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/inmunología , Hojas de la Planta/fisiología , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Potyvirus/fisiología , Mapeo de Interacción de Proteínas , Ácido Salicílico/metabolismo , Plantones/enzimología , Plantones/genética , Plantones/inmunología , Plantones/fisiología , Glycine max/genética , Glycine max/inmunología , Glycine max/fisiología , Nicotiana/enzimología , Nicotiana/genética , Nicotiana/inmunología , Nicotiana/fisiología
10.
BMC Genomics ; 14: 577, 2013 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-23985061

RESUMEN

BACKGROUND: The Hsp20 genes are associated with stress caused by HS and other abiotic factors, but have recently been found to be associated with the response to biotic stresses. These genes represent the most abundant class among the HSPs in plants, but little is known about this gene family in soybean. Because of their apparent multifunctionality, these proteins are promising targets for developing crop varieties that are better adapted to biotic and abiotic stresses. Thus, in the present study an in silico identification of GmHsp20 gene family members was performed, and the genes were characterized and subjected to in vivo expression analysis under biotic and abiotic stresses. RESULTS: A search of the available soybean genome databases revealed 51 gene models as potential GmHsp20 candidates. The 51 GmHsp20 genes were distributed across a total of 15 subfamilies where a specific predicted secondary structure was identified. Based on in vivo analysis, only 47 soybean Hsp20 genes were responsive to heat shock stress. Among the GmHsp20 genes that were potentials HSR, five were also cold-induced, and another five, in addition to one GmAcd gene, were responsive to Meloidogyne javanica infection. Furthermore, one predicted GmHsp20 was shown to be responsive only to nematode infection; no expression change was detected under other stress conditions. Some of the biotic stress-responsive GmHsp20 genes exhibited a divergent expression pattern between resistant and susceptible soybean genotypes under M. javanica infection. The putative regulatory elements presenting some conservation level in the GmHsp20 promoters included HSE, W-box, CAAT box, and TA-rich elements. Some of these putative elements showed a unique occurrence pattern among genes responsive to nematode infection. CONCLUSIONS: The evolution of Hsp20 family in soybean genome has most likely involved a total of 23 gene duplications. The obtained expression profiles revealed that the majority of the 51 GmHsp20 candidates are induced under HT, but other members of this family could also be involved in normal cellular functions, unrelated to HT. Some of the GmHsp20 genes might be specialized to respond to nematode stress, and the predicted promoter structure of these genes seems to have a particular conserved pattern related to their biological function.


Asunto(s)
Glycine max/genética , Proteínas del Choque Térmico HSP20/genética , Respuesta al Choque Térmico/genética , Proteínas de Plantas/genética , Transcriptoma , Animales , Secuencia de Bases , Mapeo Cromosómico , Secuencia Conservada , Resistencia a la Enfermedad/genética , Duplicación de Gen , Genoma de Planta , Proteínas del Choque Térmico HSP20/metabolismo , Interacciones Huésped-Parásitos , Cadenas de Markov , Datos de Secuencia Molecular , Filogenia , Enfermedades de las Plantas/parasitología , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas , Sitios de Carácter Cuantitativo , Análisis de Secuencia de ADN , Glycine max/parasitología , Glycine max/fisiología , Tylenchoidea/fisiología
11.
Funct Integr Genomics ; 13(3): 323-38, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23757006

RESUMEN

The Lesion Simulating Disease (LSD) genes encode a family of zinc finger proteins that are reported to play an important role in the hypersensitive response and programmed cell death (PCD) that are caused by biotic and abiotic stresses. In the present study, 117 putative LSD family members were identified in Viridiplantae. Genes with one, two, or three conserved LSD domains were identified. Proteins with three LSD domains were highly represented in the species analyzed and were present in basal organisms. Proteins with two LSD domains were identified only in the Embryophyte clade, and proteins possessing one LSD domain were highly represented in grass species. Expression analyses of Glycine max LSD (GmLSD) genes were performed by real-time quantitative polymerase chain reaction. The results indicated that GmLSD genes are not ubiquitously expressed in soybean organs and that their expression patterns are instead organ-dependent. The expression of the majority of GmLSD genes is modulated in soybean during Phakopsora pachyrhizi infection. In addition, the expression of some GmLSD genes is modulated in plants under dehydration stress. These results suggest the involvement of GmLSD genes in the response of soybean to both biotic and abiotic stresses.


Asunto(s)
Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Viridiplantae/genética , Secuencia de Aminoácidos , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Filogenia , Alineación de Secuencia , Estrés Fisiológico
12.
Genet Mol Biol ; 35(1 (suppl)): 247-59, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22802710

RESUMEN

Heat shock (HS) leads to the activation of molecular mechanisms, known as HS-response, that prevent damage and enhance survival under stress. Plants have a flexible and specialized network of Heat Shock Factors (HSFs), which are transcription factors that induce the expression of heat shock proteins. The present work aimed to identify and characterize the Glycine max HSF repertory in the Soybean Genome Project (GENOSOJA platform), comparing them with other legumes (Medicago truncatula and Lotus japonicus) in view of current knowledge of Arabidopsis thaliana. The HSF characterization in leguminous plants led to the identification of 25, 19 and 21 candidate ESTs in soybean, Lotus and Medicago, respectively. A search in the SuperSAGE libraries revealed 68 tags distributed in seven HSF gene types. From the total number of obtained tags, more than 70% were related to root tissues (water deficit stress libraries vs. controls), indicating their role in abiotic stress responses, since the root is the first tissue to sense and respond to abiotic stress. Moreover, as heat stress is related to the pressure of dryness, a higher HSF expression was expected at the water deficit libraries. On the other hand, expressive HSF candidates were obtained from the library inoculated with Asian Soybean Rust, inferring crosstalk among genes associated with abiotic and biotic stresses. Evolutionary relationships among sequences were consistent with different HSF classes and subclasses. Expression profiling indicated that regulation of specific genes is associated with the stage of plant development and also with stimuli from other abiotic stresses pointing to the maintenance of HSF expression at a basal level in soybean, favoring its activation under heat-stress conditions.

13.
BMC Genomics ; 12: 307, 2011 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-21663675

RESUMEN

BACKGROUND: Small RNAs (19-24 nt) are key regulators of gene expression that guide both transcriptional and post-transcriptional silencing mechanisms in eukaryotes. Current studies have demonstrated that microRNAs (miRNAs) act in several plant pathways associated with tissue proliferation, differentiation, and development and in response to abiotic and biotic stresses. In order to identify new miRNAs in soybean and to verify those that are possibly water deficit and rust-stress regulated, eight libraries of small RNAs were constructed and submitted to Solexa sequencing. RESULTS: The libraries were developed from drought-sensitive and tolerant seedlings and rust-susceptible and resistant soybeans with or without stressors. Sequencing the library and subsequent analyses detected 256 miRNAs. From this total, we identified 24 families of novel miRNAs that had not been reported before, six families of conserved miRNAs that exist in other plants species, and 22 families previously reported in soybean. We also observed the presence of several isomiRNAs during our analyses. To validate novel miRNAs, we performed RT-qPCR across the eight different libraries. Among the 11 miRNAs analyzed, all showed different expression profiles during biotic and abiotic stresses to soybean. The majority of miRNAs were up-regulated during water deficit stress in the sensitive plants. However, for the tolerant genotype, most of the miRNAs were down regulated. The pattern of miRNAs expression was also different for the distinct genotypes submitted to the pathogen stress. Most miRNAs were down regulated during the fungus infection in the susceptible genotype; however, in the resistant genotype, most miRNAs did not vary during rust attack. A prediction of the putative targets was carried out for conserved and novel miRNAs families. CONCLUSIONS: Validation of our results with quantitative RT-qPCR revealed that Solexa sequencing is a powerful tool for miRNA discovery. The identification of differentially expressed plant miRNAs provides molecular evidence for the possible involvement of miRNAs in the process of water deficit- and rust-stress responses.


Asunto(s)
Glycine max/genética , MicroARNs/genética , Estrés Fisiológico , Secuencia de Bases , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , MicroARNs/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Reacción en Cadena de la Polimerasa , ARN de Planta/genética , ARN de Planta/metabolismo , Análisis de Secuencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA