Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Open Biol ; 14(1): 230366, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38290548

RESUMEN

Ribosomal protein uS10, a product of the RPS20 gene, is an essential constituent of the small (40S) subunit of the human ribosome. Disruptive mutations in its gene are associated with a predisposition to hereditary colorectal carcinoma. Here, using HEK293T cells, we show that a deficiency of this protein leads to a decrease in the level of ribosomes (ribosomal shortage). RNA sequencing of the total and polysome-associated mRNA samples reveals hundreds of genes differentially expressed in the transcriptome (t)DEGs and translatome (p)DEGs under conditions of uS10 deficiency. We demonstrate that the (t)DEG and (p)DEG sets partially overlap, determine genes with altered translational efficiency (TE) and identify cellular processes affected by uS10 deficiency-induced ribosomal shortage. We reveal that translated mRNAs of upregulated (p)DEGs and genes with altered TE in uS10-deficient cells are generally more abundant and that their GC contents are significantly lower than those of the respective downregulated sets. We also observed that upregulated (p)DEGs have longer coding sequences. Based on our findings, we propose a combinatorial model describing the process of reorganization of mRNA translation under conditions of ribosomal shortage. Our results reveal rules according to which ribosomal shortage reorganizes the transcriptome and translatome repertoires of actively proliferating cells.


Asunto(s)
Proteínas Ribosómicas , Ribosomas , Humanos , Composición de Base , Células HEK293 , Biosíntesis de Proteínas , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
2.
Biochimie ; 218: 96-104, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37716853

RESUMEN

Ribosomal protein eL42 (formerly known as L36A), a small protein of the large (60S) subunit of the eukaryotic ribosome, is a component of its exit (E) site. The residue K53 of this protein resides within the motif QSGYGGQTK mainly conserved in eukaryotes, and it is located in the immediate vicinity of the CCA-terminus of the ribosome-bound tRNA in the hybrid P/E state. To examine the role of this eL42 motif in translation, we obtained HEK293T cells producing the wild-type FLAG-tagged protein or its mutant forms with either single substitutions of conserved amino acid residues in the above motif, or simultaneous replacements in positions 45 and 51 or 45 and 53. Examination of the level of exogenous eL42 in fractions of polysome profiles from the target protein-producing cells by the Western blotting revealed that neither single substitution affects the assembly of 60S ribosomal subunits and 80S ribosomes or critically decreases the level of polysomes, but the latter was observed with the double replacements. Analysis of tRNAs bound to 80S ribosomes containing eL42 with double substitutions and examination their peptidyl transferase activity enabled estimation the stage of the elongation cycle, in which amino acid residues of the conserved eL42 motif are involved. We clearly show that cooperative interactions implicating the eL42 residues Q45, Q51, and K53 play a critical role in the ability of the human ribosome to perform properly elongation cycle at the step of deacylated tRNA dissociation from the E site in the human cell.


Asunto(s)
Proteínas Ribosómicas , Ribosomas , Humanos , Proteínas Ribosómicas/metabolismo , Células HEK293 , Ribosomas/metabolismo , Biosíntesis de Proteínas , ARN de Transferencia/metabolismo , Aminoácidos/metabolismo
3.
Int J Mol Sci ; 24(14)2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37511213

RESUMEN

Ribosomal proteins (RPs), the constituents of the ribosome, belong to the most abundant proteins in the cell. A highly coordinated network of interactions implicating RPs and ribosomal RNAs (rRNAs) forms the functionally competent structure of the ribosome, enabling it to perform translation, the synthesis of polypeptide chain on the messenger RNA (mRNA) template. Several RPs contact ribosomal ligands, namely, those with transfer RNAs (tRNAs), mRNA or translation factors in the course of translation, and the contribution of a number of these particular contacts to the translation process has recently been established. Many ribosomal proteins also have various extra-ribosomal functions unrelated to translation. The least-understood and -discussed functions of RPs are those related to their participation in the intercellular communication via extracellular vesicles including exosomes, etc., which often carry RPs as passengers. Recently reported data show that such a kind of communication can reprogram a receptor cell and change its phenotype, which is associated with cancer progression and metastasis. Here, we review the state-of-art ideas on the implications of specific amino acid residues of RPs in the particular stages of the translation process in higher eukaryotes and currently available data on the transport of RPs by extracellular vesicles and its biological effects.


Asunto(s)
Exosomas , Proteínas Ribosómicas , Proteínas Ribosómicas/metabolismo , Exosomas/metabolismo , Ribosomas/metabolismo , Eucariontes/genética , ARN Ribosómico/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
4.
Int J Mol Sci ; 24(7)2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37047141

RESUMEN

Ribosomal protein uL15 (RPL27a) carries a specific modification, hydroxylation, at the His39 residue, which neighbors the CCA terminus of the E-site-bound tRNA at the mammalian ribosome. Under hypoxia, the level of hydroxylation of this protein decreases. We transiently transfected HEK293T cells with constructs expressing wild-type uL15 or mutated uL15 (His39Ala) incapable of hydroxylation, and demonstrated that ribosomes containing both proteins are competent in translation. By applying RNA-seq to the total cellular and polysome-associated mRNAs, we identified differentially expressed genes (DEGs) in cells containing exogenous uL15 or its mutant form. Analyzing mRNA features of up- and down-regulated DEGs, we found an increase in the level of more abundant mRNAs and shorter CDSs in cells with uL15 mutant for both translated and total cellular mRNAs. The level of longer and rarer mRNAs, on the contrary, decreased. Our data show how ribosome heterogeneity can change the composition of the translatome and transcriptome, depending on the properties of the translated mRNAs.


Asunto(s)
Biosíntesis de Proteínas , Proteínas Ribosómicas , Humanos , Animales , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Hidroxilación , Células HEK293 , Mutación , Mamíferos/metabolismo
5.
Int J Mol Sci ; 24(4)2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36835483

RESUMEN

Gene expression is a fundamental cellular process that ensures the transfer of information encoded in a gene into the final functional product [...].


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Expresión Génica
6.
Int J Mol Sci ; 23(17)2022 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-36077143

RESUMEN

The RNA cytosine C5 methyltransferase NSUN2 has a variety of RNA substrates and plays an important role in mRNA metabolism. NSUN2 binds to specific sequences enriched in exosomal mRNAs, suggesting its possible involvement in the sorting of mRNAs into exosomes. We applied the photoactivatable.4-thiouridine-enhanced cross-linking and immunoprecipitation assay involving high-throughput RNA sequencing (RNA-seq) to HEK293T cells to determine NSUN2 mRNA targets. NSUN2 cross-linking sites were found in more than one hundred relatively abundant mRNAs with a high GC content and a pronounced secondary structure. Then, utilizing RNA-seq for the total and polysome-associated mRNA from HEK293T cells with and without the knockdown of NSUN2, we identified differentially expressed genes, as well as genes with altered translational efficiency (GATEs). It turned out that the up-regulated GATE mRNAs were much shorter on average than the down-regulated ones, and their GC content was higher; moreover, they contained motifs with C residues located in GC-rich environments. Our findings reveal the specific features of mRNAs that make them potential targets for NSUN2 and expand our understanding of the role of NSUN2 in controlling translation and, possibly, in mRNA sorting into exosomes implemented through the methylation of cytosine residues.


Asunto(s)
Metiltransferasas , ARN Mensajero/metabolismo , Células HEK293 , Humanos , Metilación , Metiltransferasas/genética , Metiltransferasas/metabolismo , ARN Mensajero/química
7.
Biochim Biophys Acta Gene Regul Mech ; 1865(6): 194842, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35817369

RESUMEN

The protein eS26 is a structural component of the eukaryotic small ribosomal subunit involved in the formation of the mRNA binding channel in the region of the exit site. By applying site-directed cross-linking to mammalian 80S ribosomes, it has been shown that the same mRNA nucleotide residues are implicated in the interaction with both eS26 and translation initiation factor 3 (eIF3) and that contacts of the protein with mRNAs are mediated by its eukaryote-specific motif YxxPKxYxK. To examine the role of eS26 in translation, we transfected HEK293T cells with plasmid constructs encoding the wild-type FLAG-labeled protein (wt-eS26FLAG) or its forms with either a single substitution of any conserved amino acid residue in the above motif, or a simultaneous replacement of all the five ones (5A). The western blot analysis of fractions of polysome profiles from the transfected cells revealed no effects of the single mutations in eS26, but showed that the replacement of the five conserved residues led to the increased share of the light polysome fraction compared to that detected with control, wt-eS26FLAG-producing cells. In addition, the above fraction exhibited the enhanced content of the eIF3e subunit that is known to promote selective translation. These findings, together with real-time PCR data on the relative contents of specific mRNAs in light and heavy polysomes from cells producing the mutant 5A compared to those from control cells, suggest a possible involvement of the YxxPKxYxK motif of eS26 in the fine regulation of translation to maintain the required balance of synthesized proteins.


Asunto(s)
Biosíntesis de Proteínas , Proteínas Ribosómicas/metabolismo , Animales , Eucariontes/genética , Factor 3 de Iniciación Eucariótica/genética , Células HEK293 , Humanos , Mamíferos/genética , ARN Mensajero/metabolismo , Proteínas Ribosómicas/química , Ribosomas/genética
8.
Int J Mol Sci ; 23(11)2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35682850

RESUMEN

A number of mutations in the RPS20 gene encoding the ribosomal protein uS10 have been found to be associated with a predisposition to hereditary non-polyposis colorectal carcinoma (CRC). We transfected HEK293T cells with constructs carrying the uS10 minigene with mutations identical to those mentioned above and examined the effects of the produced proteins on the cellular transcriptome. We showed that uS10 with mutations p.V50SfsX23 or p.L61EfsX11 cannot be incorporated into 40S ribosomal subunits, while the protein with the missense mutation p.V54L functionally replaces the respective endogenous protein in the 40S subunit assembly and the translation process. The comparison of RNA-seq data obtained from cells producing aberrant forms of uS10 with data for those producing the wild-type protein revealed overlapping sets of upregulated and downregulated differently expressed genes (DEGs) related to several pathways. Among the limited number of upregulated DEGs, there were genes directly associated with the progression of CRC, e.g., PPM1D and PIGN. Our findings indicate that the accumulation of the mutant forms of uS10 triggers a cascade of cellular events, similar to that which is triggered when the cell responds to a large number of erroneous proteins, suggesting that this may increase the risk of cancer.


Asunto(s)
Neoplasias Colorrectales , Proteínas Ribosómicas , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Susceptibilidad a Enfermedades , Células HEK293 , Humanos , Mutación , Proteínas Ribosómicas/genética , Transcriptoma
9.
Int J Mol Sci ; 22(24)2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34948282

RESUMEN

Protein uL5 (formerly called L11) is an integral component of the large (60S) subunit of the human ribosome, and its deficiency in cells leads to the impaired biogenesis of 60S subunits. Using RNA interference, we reduced the level of uL5 in HEK293T cells by three times, which caused an almost proportional decrease in the content of the fraction corresponding to 80S ribosomes, without a noticeable diminution in the level of polysomes. By RNA sequencing of uL5-deficient and control cell samples, which were those of total mRNA and mRNA from the polysome fraction, we identified hundreds of differentially expressed genes (DEGs) at the transcriptome and translatome levels and revealed dozens of genes with altered translational efficiency (GATEs). Transcriptionally up-regulated DEGs were mainly associated with rRNA processing, pre-mRNA splicing, translation and DNA repair, while down-regulated DEGs were genes of membrane proteins; the type of regulation depended on the GC content in the 3' untranslated regions of DEG mRNAs. The belonging of GATEs to up-regulated and down-regulated ones was determined by the coding sequence length of their mRNAs. Our findings suggest that the effects observed in uL5-deficient cells result from an insufficiency of translationally active ribosomes caused by a deficiency of 60S subunits.


Asunto(s)
Regulación de la Expresión Génica/genética , Proteínas Ribosómicas/deficiencia , Proteínas Ribosómicas/metabolismo , Expresión Génica/genética , Perfilación de la Expresión Génica/métodos , Células HEK293 , Humanos , Biosíntesis de Proteínas/fisiología , Procesamiento Postranscripcional del ARN , ARN Mensajero/genética , Proteínas Ribosómicas/genética , Ribosomas/metabolismo , Transcripción Genética/fisiología , Transcriptoma/genética
10.
Comput Struct Biotechnol J ; 19: 4702-4710, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34504663

RESUMEN

The conformation of mRNA in the region of the human 80S ribosome decoding site was monitored using 11-mer mRNA analogues that bore nitroxide spin labels attached to the terminal nucleotide bases. Intramolecular spin-spin distances were measured by DEER/PELDOR spectroscopy in model complexes mimicking different states of the 80S ribosome during elongation and termination of translation. The measurements revealed that in all studied complexes, mRNA exists in two alternative conformations, whose ratios are different in post-translocation, pre-translocation and termination complexes. We found that the presence of a tRNA molecule at the ribosomal A site decreases the relative share of the more extended mRNA conformation, whereas the binding of eRF1 (alone or in a complex with eRF3) results in the opposite effect. In the termination complexes, the ratios of mRNA conformations are practically the same, indicating that a part of mRNA bound in the ribosome channel does not undergo significant structural alterations in the course of completion of the translation. Our results contribute to the understanding of mRNA molecular dynamics in the mammalian ribosome channel during translation.

11.
Int J Mol Sci ; 22(9)2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-33926116

RESUMEN

The protein eL38 is one of the smallest proteins of the mammalian ribosome, which is a component of its large (60S) subunit. The haploinsufficiency of eL38 in mice leads to the Tail-short mutant phenotype characterized by defects in the development of the axial skeleton caused by the poor translation of mRNA subsets of Hox genes. Using the ribosome profiling assay applied to HEK293 cells knocked down of eL38, we examined the effects of the lack of eL38 in 60S subunits on gene expression at the level of translation. A four-fold decrease in the cell content of eL38 was shown to result in significant changes in the translational efficiencies of 150 genes. Among the genes, whose expression at the level of translation was enhanced, there were mainly those associated with basic metabolic processes; namely, translation, protein folding, chromosome organization, splicing, and others. The set of genes with reduced translation efficiencies contained those that are mostly involved in the processes related to the regulation of transcription, including the activation of Hox genes. Thus, we demonstrated that eL38 insufficiency significantly affects the expression of certain genes at the translational level. Our findings facilitate understanding the possible causes of some anomalies in eL38-deficient animals.


Asunto(s)
Regulación de la Expresión Génica/genética , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Expresión Génica/genética , Células HEK293 , Humanos , Biosíntesis de Proteínas , ARN Mensajero/genética , Subunidades Ribosómicas Grandes de Eucariotas/genética , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Ribosomas/metabolismo , Transcriptoma/genética
12.
Biochimie ; 184: 132-142, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33675855

RESUMEN

The ribosomal protein eL38 is a component of the mammalian translation machine. The deletion of the Rpl38 locus in mice results in the Tail-short (Ts) mutant phenotype characterized by a shortened tail and other defects in the axial skeleton development. Here, using the next-generation sequencing of total RNA from HEK293 cells knocked down of eL38 mRNA by transfection with specific siRNAs, we examined the effect of reduced eL38 content on genomic transcription. An approximately 4-fold decrease in the level of eL38 was shown to cause changes in the expression of nearly 1500 genes. Among the down-regulated genes, there were those responsible for p53 activity, Ca2+ metabolism and several signaling processes, as well as genes involved in the organization and functioning of the cytoskeleton. The genes related to rRNA processing and translation, along with many others, including those whose dysregulation is associated with developmental disorders, turned out to be up-regulated. Thus, we demonstrated that the decreased RPL38 expression leads to a significant reorganization of genomic transcription. Our findings suggest a possible link between the balance of eL38 and genes implicated in osteogenesis, thereby contributing to the elucidation of the reasons for the appearance of the above Ts mutant phenotype in animals.


Asunto(s)
Genoma Humano , ARN Mensajero/metabolismo , Proteínas Ribosómicas/metabolismo , Transcripción Genética , Células HEK293 , Humanos , ARN Mensajero/genética , Proteínas Ribosómicas/genética
13.
Biochimie ; 177: 68-77, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32798643

RESUMEN

The balance of ribosomal proteins is important for the assembly of ribosomal subunits and cell viability. The synthesis of ribosomal proteins in a eukaryotic cell is controlled by various mechanisms, including autoregulation, which so far has been revealed for only a few of these proteins. We applied the photoactivatable 4-thiouridine-enhanced cross-linking and immunoprecipitation assay to HEK293T cells overproducing FLAG-labeled human ribosomal protein eL29 (eL29FLAG) to determine which RNAs other than rRNA interact with eL29. We demonstrated that eL29FLAG was incorporated into 60S subunits, and that ribosomes with those containing eL29FLAG were competent in translation. Analysis of the next generation sequencing data obtained from a DNA library derived from RNA fragments with covalently attached eL29FLAG peptide residues showed that the protein was cross-linked to the mRNA of the eL29-coding gene, which turned out to be its only major RNA target. The eL29FLAG cross-linking sites were located in the 3' part of the mRNA coding sequence (CDS). A specific helix that mimics the eL29 binding site on 28S rRNA was proposed as a site that is recognized by the protein upon its binding to the cognate mRNA. In addition, it was found that both eL29FLAG mRNA and eL29 mRNA, unlike those of other ribosomal proteins, were co-immunoprecipitated with eL29FLAG from the ribosome-depleted cell lysate, and recombinant eL29 inhibited the translation of the eL29 mRNA CDS transcript in a cell-free system. All this suggests that human eL29 regulates its own synthesis via a feedback mechanism by binding to the cognate mRNA, preventing its translation.


Asunto(s)
ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Sitios de Unión , Regulación de la Expresión Génica , Biblioteca de Genes , Células HEK293 , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Inmunoprecipitación , Modelos Moleculares , Sistemas de Lectura Abierta , Biosíntesis de Proteínas/fisiología , ARN Mensajero/química , ARN Ribosómico/metabolismo , ARN Ribosómico 28S/metabolismo , Proteínas de Unión al ARN/química , Proteínas Ribosómicas/química , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Ribosomas/metabolismo
14.
Cells ; 9(5)2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32429214

RESUMEN

An imbalance in the synthesis of ribosomal proteins can lead to the disruption of various cellular processes. For mammalian cells, it has been shown that the level of the eukaryote-specific ribosomal protein eL29, also known as the one interacting with heparin/heparan sulfate, substantially affects their growth. Moreover, in animals lacking this protein, a number of anatomical abnormalities have been observed. Here, we applied next-generation RNA sequencing to HEK293 cells transfected with siRNAs specific for the mRNA of eL29 to determine what changes occur in the transcriptome profile with a decrease in the level of the target protein. We showed that an approximately 2.5-fold decrease in the content of eL29 leads to statistically significant changes in the expression of more than a thousand genes at the transcription level, without a noticeable effect on cell viability, rRNA level, and global translation. The set of eL29-dependent genes included both up-regulated and down-regulated ones, among which there are those previously identified as targets for proteins implicated in oncogenesis. Thus, our findings demonstrate that an insufficiency of eL29 in mammalian cells causes a significant reorganization of gene expression, thereby highlighting the relationship between the cellular balance of eL29 and the activities of certain genes.


Asunto(s)
Regulación de la Expresión Génica , Mamíferos/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Ribosómicas/metabolismo , Transcripción Genética , Animales , Técnicas de Silenciamiento del Gen , Ontología de Genes , Células HEK293 , Humanos , Proteínas Proto-Oncogénicas c-myc/metabolismo , RNA-Seq , Transcriptoma , Proteína p53 Supresora de Tumor/metabolismo
15.
Biochimie ; 170: 152-162, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31935443

RESUMEN

The multifunctional protein YB-1 has previously been shown to be the only protein of the cytoplasmic extract of HEK293 cells, which is able to specifically interact with imperfect RNA hairpins containing motifs that are often found in exosomal (e) RNAs. In addition, it has been revealed that similar hairpins formed by degenerate consensus sequences corresponding to three eRNA-specific motifs are responsible for the cooperative binding of YB-1 to RNA in vitro. Here, using the photoactivatable ribonucleoside-enhanced cross-linking and immunoprecipitation method applied to HEK293 cells producing FLAG-labeled YB-1, we identified mRNAs cross-linked to YB-1 in vivo and then carried out a search for the aforementioned sequences in the regions of the YB-1 cross-linking sites. It turned out that many of the mRNAs found cross-linked to YB-1 encode proteins associated with various regulatory processes, including responses to stress. More than half of all cross-linked mRNAs contained degenerate consensus sequences, which were preferably located in 3'-untranslated regions (UTRs), where most of the YB-1 cross-linking sites appeared, although not close to these sequences. Furthermore, YB-1 was mainly cross-linked to those mRNAs with degenerate consensus sequences, which could be classified as packaged because their translation levels were low compared to cellular levels. This suggests that the cooperative binding of YB-1 to mRNAs through the above sequences probably triggers the well-known multimerization of YB-l, leading to the packaging of these mRNAs. Thus, our findings indicate a previously unknown link between the degenerate consensus sequences present in the 3'-UTRs of many cytoplasmic mRNAs and YB-1-mediated translational silencing.


Asunto(s)
Regiones no Traducidas 3'/genética , Secuencia de Consenso , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Proteína 1 de Unión a la Caja Y/metabolismo , Sitios de Unión , Células HEK293 , Humanos , Unión Proteica , ARN Mensajero/genética , Proteína 1 de Unión a la Caja Y/genética
16.
Biochim Biophys Acta Gene Regul Mech ; 1863(3): 194490, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31991215

RESUMEN

The eukaryotic ribosomal protein uS19 has a C-terminal tail that is absent in its bacterial homologue. This tail has been shown to be involved in the formation of the decoding site of human ribosomes. We studied here the previously unexplored functional significance of the 15 C-terminal amino acid residues of human uS19 for the assembly of ribosomes and translation using HEK293-based cell cultures capable of producing FLAG-labeled uS19 (uS19FLAG) or its mutant form deprived of the mentioned amino acid ones. The examination of polysome profiles of cytoplasmic extracts from the respective cells revealed that the deletion of the above uS19 amino acid residues barely affected the assembly and maturation of 40S subunits and the initiation of translation, but completely prevented the formation of polysomes. This implied the crucial importance of the uS19 tail in the elongation process. Analysis of tRNAs associated with 40S subunits and 80S ribosomes containing wild type uS19FLAG or its truncated form showed that the deletion of the C-terminal pentadecapeptide fragment of uS19 did not interfere with the binding of aminoacyl-tRNA (aa-tRNA) at the ribosomal A site. The results led to the conclusion that the transpeptidation, which occurs on the large ribosomal subunit after decoding the A site codon by the incoming aa-tRNA, is the most likely elongation stage, where this uS19 fragment can play a critical role. Our findings suggest that the uS19 tail is a keystone player in the accommodation of aa-tRNA at the A site, which is a pre-requisite for the peptide transfer.


Asunto(s)
Proteínas Ribosómicas/química , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Secuencia de Aminoácidos , Células HEK293 , Humanos , Polirribosomas/metabolismo , ARN de Transferencia/metabolismo , Proteínas Ribosómicas/genética , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Eliminación de Secuencia
17.
Nucleic Acids Res ; 48(2): 912-923, 2020 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-31802126

RESUMEN

In eukaryotic ribosomes, the conserved protein uS19, formerly known as S15, extends with its C-terminal tail to the decoding site. The cross-linking of uS19 to the A site codon has been detected using synthetic mRNAs bearing 4-thiouridine (s4U) residues. Here, we showed that the A-site tRNA prevents this cross-linking and that the P site codon does not contact uS19. Next, we focused on determining uS19-mRNA interactions in vivo by applying the photoactivatable-ribonucleoside enhancing cross-linking and immunoprecipitation method to a stable HEK293 cell line producing FLAG-tagged uS19 and grown in a medium containing s4U. We found that when translation was stopped by cycloheximide, uS19 was efficiently cross-linked to mRNA regions with a high frequency of Glu, Lys and, more rarely, Arg codons. The results indicate that the complexes, in which the A site codon is not involved in the formation of the mRNA-tRNA duplex, are present among the cycloheximide-arrested 80S complexes, which implies pausing of elongating ribosomes at the above mRNA regions. Thus, our findings demonstrate that the human ribosomal protein uS19 interacts with mRNAs during translation elongation and highlight the regions of mRNAs where ribosome pausing occurs, bringing new structural and functional insights into eukaryotic translation in vivo.


Asunto(s)
ARN Mensajero/química , Proteínas Ribosómicas/química , Ribosomas/química , Codón , Eucariontes/genética , Células HEK293 , Humanos , Biosíntesis de Proteínas/genética , ARN Mensajero/genética , ARN de Transferencia/química , ARN de Transferencia/genética , Proteínas Ribosómicas/genética , Ribosomas/genética , Tiouridina/química
18.
Nucleic Acids Res ; 47(22): 11850-11860, 2019 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-31724718

RESUMEN

The features of previously unexplored labile complexes of human 40S ribosomal subunits with RNAs, whose formation is manifested in the cross-linking of aldehyde derivatives of RNAs to the ribosomal protein uS3 through its peptide 55-64 located outside the mRNA channel, were studied by EPR spectroscopy methods. Analysis of subatomic 40S subunit models showed that a likely site for labile RNA binding is a cluster of positively charged amino acid residues between the mRNA entry site and uS3 peptide 55-64. This is consistent with our finding that the 3'-terminal mRNA fragment hanging outside the 40S subunit prevents the cross-linking of an RNA derivative to this peptide. To detect labile complexes of 40S subunits with RNA by DEER/PELDOR spectroscopy, an undecaribonucleotide derivative with nitroxide spin labels at terminal nucleotides was utilized. We demonstrated that the 40S subunit channel occupancy with mRNA does not affect the RNA derivative binding and that uS3 peptide 55-64 is not involved in binding interactions. Replacing the RNA derivative with a DNA one revealed the importance of ribose 2'-OH groups for the complex formation. Using the single-label RNA derivatives, the distance between the mRNA entry site and the loosely bound RNA site on the 40S subunit was estimated.


Asunto(s)
Iniciación de la Cadena Peptídica Traduccional , ARN Mensajero/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Cristalografía por Rayos X , Espectroscopía de Resonancia por Spin del Electrón , Humanos , Unión Proteica , ARN Mensajero/química , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/química
19.
Biochim Biophys Acta Gene Regul Mech ; 1862(9): 194411, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31356988

RESUMEN

Conserved ribosomal protein uS3 contains a decapeptide fragment in positions 55-64 (human numbering), which has a very specific ability to cross-link to various RNA derivatives bearing aldehyde groups, likely provided by K62. It has been shown that during translation in the cell-free protein-synthesizing system, uS3 becomes accessible for such cross-linking only after eIF3j leaves the mRNA binding channel of the 40S ribosomal subunit. We studied the functional role of K62 and its nearest neighbors in the ribosomal assembly and translation with the use of HEK293T-derived cell cultures capable of producing FLAG-tagged uS3 (uS3FLAG) or its mutant form with amino acid residues at positions 60-63 replaced with alanines. Analysis of polysome profiles from the respective cells and cytosol lysates showed that the mutation significantly affected the uS3 ability to participate in the assembly of 40S subunits, but it was not essential for their maturation and did not prevent the binding of mRNAs to 40S subunits during translation initiation. The most striking effect of the replacement of amino acid residues in the above uS3 positions was that it almost completely deprived the 40S subunits of their ability to form 80S ribosomes, suggesting that the 48S pre-initiation complexes assembled on these subunits were defective in the binding of 60S subunits. Thus, our results revealed the previously unknown crucial role of the uS3 tetrapeptide 60GEKG63 in translation initiation related to maintaining the proper structure of the 48S complex, most likely via the prevention of premature mRNA loading into the ribosomal channel.


Asunto(s)
Péptidos/genética , Biosíntesis de Proteínas , Proteínas Ribosómicas/química , Subunidades Ribosómicas Pequeñas de Eucariotas/genética , Aminoácidos/química , Aminoácidos/genética , Sistema Libre de Células , Células HEK293 , Humanos , Péptidos/química , Polirribosomas/química , Polirribosomas/genética , Unión Proteica , Procesamiento Proteico-Postraduccional/genética , ARN Mensajero/química , ARN Mensajero/genética , Proteínas Ribosómicas/genética , Subunidades Ribosómicas Pequeñas de Eucariotas/química
20.
Future Med Chem ; 11(4): 357-369, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30802140

RESUMEN

During the current decade, data on the post-translational hydroxylation of specific amino acid residues of some ribosomal proteins and translation factors in both eukaryotes and eubacteria have accumulated. The reaction is catalyzed by dedicated oxygenases (so-called ribosomal oxygenases), whose action is impaired under hypoxia conditions. The modification occurs at amino acid residues directly involved in the formation of the main functional sites of ribosomes and factors. This review summarizes currently available data on the specific hydroxylation of protein constituents of eukaryotic and eubacterial translation systems with a special emphasis on the human system, as well as on the links between hypoxia impacts on the operation of ribosomal oxygenases, the functioning of the translational apparatus and human health problems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA