Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Chem ; 12: 1426211, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39246722

RESUMEN

Understanding the functions of metal ions in biological systems is crucial for many aspects of research, including deciphering their roles in diseases and potential therapeutic use. Structural information about the molecular or atomic details of these interactions, generated by methods like X-ray crystallography, cryo-electron microscopy, or nucleic magnetic resonance, frequently provides details that no other method can. As with any experimental method, they have inherent limitations that sometimes lead to an erroneous interpretation. This manuscript highlights different aspects of structural data available for metal-protein complexes. We examine the quality of modeling metal ion binding sites across different structure determination methods, where different kinds of errors stem from, and how they can impact correct interpretations and conclusions.

2.
Nat Chem Biol ; 18(4): 422-431, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35027744

RESUMEN

Ubiquitin (Ub) chain types govern distinct biological processes. K48-linked polyUb chains target substrates for proteasomal degradation, but the mechanism of Ub chain synthesis remains elusive due to the transient nature of Ub handover. Here, we present the structure of a chemically trapped complex of the E2 UBE2K covalently linked to donor Ub and acceptor K48-linked di-Ub, primed for K48-linked Ub chain synthesis by a RING E3. The structure reveals the basis for acceptor Ub recognition by UBE2K active site residues and the C-terminal Ub-associated (UBA) domain, to impart K48-linked Ub specificity and catalysis. Furthermore, the structure unveils multiple Ub-binding surfaces on the UBA domain that allow distinct binding modes for K48- and K63-linked Ub chains. This multivalent Ub-binding feature serves to recruit UBE2K to ubiquitinated substrates to overcome weak acceptor Ub affinity and thereby promote chain elongation. These findings elucidate the mechanism of processive K48-linked polyUb chain formation by UBE2K.


Asunto(s)
Poliubiquitina , Ubiquitina , Poliubiquitina/metabolismo , Unión Proteica , Dominios Proteicos , Ubiquitina/química , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitinación
3.
Front Mol Biosci ; 8: 646046, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33912589

RESUMEN

Enzymes in the Gcn5-related N-acetyltransferase (GNAT) superfamily are widespread and critically involved in multiple cellular processes ranging from antibiotic resistance to histone modification. While acetyl transfer is the most widely catalyzed reaction, recent studies have revealed that these enzymes are also capable of performing succinylation, condensation, decarboxylation, and methylcarbamoylation reactions. The canonical chemical mechanism attributed to GNATs is a general acid/base mechanism; however, mounting evidence has cast doubt on the applicability of this mechanism to all GNATs. This study shows that the Pseudomonas aeruginosa PA3944 enzyme uses a nucleophilic serine residue and a hybrid ping-pong mechanism for catalysis instead of a general acid/base mechanism. To simplify this enzyme's kinetic characterization, we synthesized a polymyxin B substrate analog and performed molecular docking experiments. We performed site-directed mutagenesis of key active site residues (S148 and E102) and determined the structure of the E102A mutant. We found that the serine residue is essential for catalysis toward the synthetic substrate analog and polymyxin B, but the glutamate residue is more likely important for substrate recognition or stabilization. Our results challenge the current paradigm of GNAT mechanisms and show that this common enzyme scaffold utilizes different active site residues to accomplish a diversity of catalytic reactions.

4.
IUCrJ ; 7(Pt 6)2020 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-33063792

RESUMEN

Dexamethasone, a widely used corticosteroid, has recently been reported as the first drug to increase the survival chances of patients with severe COVID-19. Therapeutic agents, including dexamethasone, are mostly transported through the body by binding to serum albumin. Here, the first structure of serum albumin in complex with dexamethasone is reported. Dexamethasone binds to drug site 7, which is also the binding site for commonly used nonsteroidal anti-inflammatory drugs and testosterone, suggesting potentially problematic binding competition. This study bridges structural findings with an analysis of publicly available clinical data from Wuhan and suggests that an adjustment of the dexamethasone regimen should be further investigated as a strategy for patients affected by two major COVID-19 risk factors: low albumin levels and diabetes.

5.
bioRxiv ; 2020 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-32743572

RESUMEN

Dexamethasone, a widely used corticosteroid, has recently been reported as the first drug to increase the survival chances of patients with severe COVID-19. Therapeutic agents, including dexamethasone, are mostly transported through the body by binding to serum albumin. Herein, we report the first structure of serum albumin in complex with dexamethasone. We show that it binds to Drug Site 7, which is also the binding site for commonly used nonsteroidal anti-inflammatory drugs and testosterone, suggesting potentially problematic binding competition. This study bridges structural findings with our analysis of publicly available clinical data from Wuhan and suggests that an adjustment of dexamethasone regimen should be considered for patients affected by two major COVID-19 risk-factors: low albumin levels and diabetes.

6.
Chem Sci ; 10(6): 1607-1618, 2019 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-30842823

RESUMEN

Serum albumin is the most abundant protein in mammalian blood plasma and is responsible for the transport of metals, drugs, and various metabolites, including hormones. We report the first albumin structure in complex with testosterone, the primary male sex hormone. Testosterone is bound in two sites, neither of which overlaps with the previously suggested Sudlow site I. We determined the binding constant of testosterone to equine and human albumins by two different methods: tryptophan fluorescence quenching and ultrafast affinity extraction. The binding studies and similarities between residues comprising the binding sites on serum albumins suggest that testosterone binds to the same sites on both proteins. Our comparative analysis of albumin complexes with hormones, drugs, and other biologically relevant compounds strongly suggests interference between a number of compounds present in blood and testosterone transport by serum albumin. We discuss a possible link between our findings and some phenomena observed in human patients, such as low testosterone levels in diabetic patients.

7.
Biochemistry ; 57(51): 7011-7020, 2018 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-30499668

RESUMEN

Deeper exploration of uncharacterized Gcn5-related N-acetyltransferases has the potential to expand our knowledge of the types of molecules that can be acylated by this important superfamily of enzymes and may offer new opportunities for biotechnological applications. While determining native or biologically relevant in vivo functions of uncharacterized proteins is ideal, their alternative or promiscuous in vitro capabilities provide insight into key active site interactions. Additionally, this knowledge can be exploited to selectively modify complex molecules and reduce byproducts when synthetic routes become challenging. During our exploration of uncharacterized Gcn5-related N-acetyltransferases from Pseudomonas aeruginosa, we identified such an example. We found that the PA3944 enzyme acetylates both polymyxin B and colistin on a single diaminobutyric acid residue closest to the macrocyclic ring of the antimicrobial peptide and determined the PA3944 crystal structure. This finding is important for several reasons. (1) To the best of our knowledge, this is the first report of enzymatic acylation of polymyxins and thus reveals a new type of substrate that this enzyme family can use. (2) The enzymatic acetylation offers a controlled method for antibiotic modification compared to classical promiscuous chemical methods. (3) The site of acetylation would reduce the overall positive charge of the molecule, which is important for reducing nephrotoxic effects and may be a salvage strategy for this important class of antibiotics. While the physiological substrate for this enzyme remains unknown, our structural and functional characterization of PA3944 offers insight into its unique noncanonical substrate specificity.


Asunto(s)
Antibacterianos/metabolismo , Proteínas Bacterianas/metabolismo , Colistina/metabolismo , Acetiltransferasas N-Terminal/metabolismo , Polimixina B/metabolismo , Acetilación , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Cristalografía por Rayos X , Genes Bacterianos , Cinética , Modelos Moleculares , Acetiltransferasas N-Terminal/química , Acetiltransferasas N-Terminal/genética , Conformación Proteica , Pseudomonas aeruginosa/enzimología , Pseudomonas aeruginosa/genética , Especificidad por Sustrato
8.
Biochem Biophys Res Commun ; 503(3): 1993-1999, 2018 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-30093108

RESUMEN

Neisseria gonorrhoeae, an obligate human pathogen, is a leading cause of communicable diseases globally. Due to rapid development of drug resistance, the rate of successfully curing gonococcal infections is rapidly decreasing. Hence, research is being directed toward finding alternative drugs or drug targets to help eradicate these infections. 4-Hydroxy-tetrahydrodipicolinate reductase (DapB), an important enzyme in the meso-diaminopimelate pathway, is a promising target for the development of new antibiotics. This manuscript describes the first structure of DapB from N. gonorrhoeae determined at 1.85 Å. This enzyme uses NAD(P)H as cofactor. Details of the interactions of the enzyme with its cofactors and a substrate analog/inhibitor are discussed. A large scale bioinformatics analysis of DapBs' sequences is also described.


Asunto(s)
NADP/metabolismo , Neisseria gonorrhoeae/enzimología , Coenzimas/metabolismo , Modelos Moleculares , NADP/química , Conformación Proteica , Especificidad por Sustrato
9.
FEBS Lett ; 591(15): 2348-2361, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28703494

RESUMEN

Gcn5-related N-acetyltransferases (GNATs) are found in all kingdoms of life and catalyze important acyl transfer reactions in diverse cellular processes. While many 3D structures of GNATs have been determined, most do not contain acceptor substrates in their active sites. To expand upon existing crystallographic strategies for improving acceptor-bound GNAT structures, we synthesized peptide substrate analogs and reacted them with CoA in PA4794 protein crystals. We found two separate mechanisms for bisubstrate formation: (a) a novel X-ray induced radical-mediated alkylation of CoA with an alkene peptide and (b) direct alkylation of CoA with a halogenated peptide. Our approach is widely applicable across the GNAT superfamily and can be used to improve the success rate of obtaining liganded structures of other acyltransferases.


Asunto(s)
Acetiltransferasas/química , Acetiltransferasas/metabolismo , Bioquímica/métodos , Coenzima A/química , Acetiltransferasas/genética , Dominio Catalítico , Cristalización , Dipéptidos/química , Dipéptidos/metabolismo
10.
FEBS J ; 284(15): 2425-2441, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28618168

RESUMEN

Streptococcus pyogenes, also known as Group A Strep (GAS), is an obligate human pathogen that is responsible for millions of infections and numerous deaths per year. Infection manifestations can range from simple, acute pharyngitis to more complex, necrotizing fasciitis. To date, most treatments for GAS infections involve the use of common antibiotics including tetracycline and clindamycin. Unfortunately, new strains have been identified that are resistant to these drugs, therefore, new targets must be identified to treat drug-resistant strains. This work is focused on the structural and functional characterization of three proteins: spNadC, spNadD, and spNadE. These enzymes are involved in the biosynthesis of nicotinamide adenine dinucleotide (NAD+ ). The structures of spNadC and spNadE were determined. SpNadC is suggested to play a role in GAS virulence, while spNadE, functions as an NAD synthetase and is considered to be a new drug target. Determination of the spNadE structure uncovered a putative, NH3 channel, which may provide insight into the mechanistic details of NH3 -dependent NAD+ synthetases in prokaryotes. ENZYMES: Quinolinate phosphoribosyltransferase: EC2.4.2.19 and NAD synthetase: EC6.3.1.5. DATABASE: Protein structures for spNadC, spNadCΔ69A , and spNadE are deposited into Protein Data Bank under the accession codes 5HUL, 5HUO & 5HUP, and 5HUH & 5HUJ, respectively.


Asunto(s)
Amida Sintasas/metabolismo , Proteínas Bacterianas/metabolismo , Modelos Moleculares , Nicotinamida-Nucleótido Adenililtransferasa/metabolismo , Pentosiltransferasa/metabolismo , Ácido Quinolínico/metabolismo , Streptococcus pyogenes/metabolismo , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Amida Sintasas/química , Amida Sintasas/genética , Apoenzimas/química , Apoenzimas/genética , Apoenzimas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión , Dominio Catalítico , Análisis por Conglomerados , Biología Computacional , Cristalografía por Rayos X , Dimerización , Eliminación de Gen , Nicotinamida-Nucleótido Adenililtransferasa/química , Nicotinamida-Nucleótido Adenililtransferasa/genética , Pentosiltransferasa/química , Pentosiltransferasa/genética , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Homología Estructural de Proteína
11.
Biochim Biophys Acta Proteins Proteom ; 1865(1): 55-64, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27783928

RESUMEN

Members of the Gcn5-related N-acetyltransferase (GNAT) superfamily catalyze the acetylation of a wide range of small molecule and protein substrates. Due to their abundance in all kingdoms of life and diversity of their functions, they are implicated in many aspects of eukaryotic and prokaryotic physiology. Although numerous GNATs have been identified thus far, many remain structurally and functionally uncharacterized. The elucidation of their structures and functions is critical for broadening our knowledge of this diverse and important superfamily. In this work, we present the structural and kinetic analyses of two previously uncharacterized bacterial acetyltransferases - SACOL1063 from Staphylococcus aureus strain COL and CD1211 from Clostridium difficile strain 630. Our structures of SACOL1063 show substantial flexibility of a loop that is likely responsible for substrate recognition and binding compared to structures of other homologs. In the CoA complex structure, we found two CoA molecules bound in both the canonical AcCoA/CoA-binding site and the acceptor-substrate-binding site. Our work also provides initial clues regarding the substrate specificity of these two enzymes; however, their native function(s) remain unknown. We found both proteins act as N- rather than O-acetyltransferases and preferentially acetylate l-threonine. The combination of structural and kinetic analyses of these two previously uncharacterized GNATs provides fundamental knowledge and a framework on which future studies can be built to elucidate their native functions.


Asunto(s)
Acetiltransferasas/metabolismo , Clostridioides difficile/enzimología , Staphylococcus aureus/enzimología , Acetiltransferasas/química , Secuencia de Aminoácidos , Mutagénesis Sitio-Dirigida , Conformación Proteica , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
12.
J Biol Chem ; 291(30): 15447-59, 2016 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-27231348

RESUMEN

Ragweed allergens affect several million people in the United States and Canada. To date, only two ragweed allergens, Amb t 5 and Amb a 11, have their structures determined and deposited to the Protein Data Bank. Here, we present structures of methylated ragweed allergen Amb a 8, Amb a 8 in the presence of poly(l-proline), and Art v 4 (mugwort allergen). Amb a 8 and Art v 4 are panallergens belonging to the profilin family of proteins. They share significant sequence and structural similarities, which results in cross-recognition by IgE antibodies. Molecular and immunological properties of Amb a 8 and Art v 4 are compared with those of Bet v 2 (birch pollen allergen) as well as with other allergenic profilins. We purified recombinant allergens that are recognized by patient IgE and are highly cross-reactive. It was determined that the analyzed allergens are relatively unstable. Structures of Amb a 8 in complex with poly(l-proline)10 or poly(l-proline)14 are the first structures of the plant profilin in complex with proline-rich peptides. Amb a 8 binds the poly(l-proline) in a mode similar to that observed in human, mouse, and P. falciparum profilin·peptide complexes. However, only some of the residues that form the peptide binding site are conserved.


Asunto(s)
Antígenos de Plantas/química , Inmunoglobulina E/química , Animales , Antígenos de Plantas/genética , Antígenos de Plantas/inmunología , Reacciones Cruzadas , Humanos , Inmunoglobulina E/inmunología , Ratones , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología
13.
Mol Immunol ; 71: 143-151, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26896718

RESUMEN

Serum albumin (SA) is the main transporter of drugs in mammalian blood plasma. Here, we report the first crystal structure of equine serum albumin (ESA) in complex with antihistamine drug cetirizine at a resolution of 2.1Å. Cetirizine is bound in two sites--a novel drug binding site (CBS1) and the fatty acid binding site 6 (CBS2). Both sites differ from those that have been proposed in multiple reports based on equilibrium dialysis and fluorescence studies for mammalian albumins as cetirizine binding sites. We show that the residues forming the binding pockets in ESA are highly conserved in human serum albumin (HSA), and suggest that binding of cetirizine to HSA will be similar. In support of that hypothesis, we show that the dissociation constants for cetirizine binding to CBS2 in ESA and HSA are identical using tryptophan fluorescence quenching. Presence of lysine and arginine residues that have been previously reported to undergo nonenzymatic glycosylation in CBS1 and CBS2 suggests that cetirizine transport in patients with diabetes could be altered. A review of all available SA structures from the PDB shows that in addition to the novel drug binding site we present here (CBS1), there are two pockets on SA capable of binding drugs that do not overlap with fatty acid binding sites and have not been discussed in published reviews.


Asunto(s)
Cetirizina/química , Albúmina Sérica/química , Secuencia de Aminoácidos , Animales , Sitios de Unión/fisiología , Cetirizina/metabolismo , Cristalografía por Rayos X , Antagonistas de los Receptores Histamínicos H1 no Sedantes/química , Antagonistas de los Receptores Histamínicos H1 no Sedantes/metabolismo , Caballos , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Cuaternaria de Proteína , Albúmina Sérica/metabolismo
14.
Protein Sci ; 25(3): 720-33, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26660914

RESUMEN

The misidentification of a protein sample, or contamination of a sample with the wrong protein, may be a potential reason for the non-reproducibility of experiments. This problem may occur in the process of heterologous overexpression and purification of recombinant proteins, as well as purification of proteins from natural sources. If the contaminated or misidentified sample is used for crystallization, in many cases the problem may not be detected until structures are determined. In the case of functional studies, the problem may not be detected for years. Here several procedures that can be successfully used for the identification of crystallized protein contaminants, including: (i) a lattice parameter search against known structures, (ii) sequence or fold identification from partially built models, and (iii) molecular replacement with common contaminants as search templates have been presented. A list of common contaminant structures to be used as alternative search models was provided. These methods were used to identify four cases of purification and crystallization artifacts. This report provides troubleshooting pointers for researchers facing difficulties in phasing or model building.


Asunto(s)
Cristalización/métodos , Proteínas/química , Acetiltransferasas/química , Acetiltransferasas/aislamiento & purificación , Animales , Artefactos , Proteínas Bacterianas/química , Proteínas Bacterianas/aislamiento & purificación , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/aislamiento & purificación , Escherichia coli/química , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/aislamiento & purificación , Proteínas/aislamiento & purificación , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Reproducibilidad de los Resultados , Factor sigma/química , Factor sigma/aislamiento & purificación , Staphylococcus aureus/química , Survivin , Xenopus/metabolismo , Proteínas de Xenopus/química
15.
J Immunol ; 195(1): 307-16, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-26026055

RESUMEN

Der p 1 is a major allergen from the house dust mite, Dermatophagoides pteronyssinus, that belongs to the papain-like cysteine protease family. To investigate the antigenic determinants of Der p 1, we determined two crystal structures of Der p 1 in complex with the Fab fragments of mAbs 5H8 or 10B9. Epitopes for these two Der p 1-specific Abs are located in different, nonoverlapping parts of the Der p 1 molecule. Nevertheless, surface area and identity of the amino acid residues involved in hydrogen bonds between allergen and Ab are similar. The epitope for mAb 10B9 only showed a partial overlap with the previously reported epitope for mAb 4C1, a cross-reactive mAb that binds Der p 1 and its homolog Der f 1 from Dermatophagoides farinae. Upon binding to Der p 1, the Fab fragment of mAb 10B9 was found to form a very rare α helix in its third CDR of the H chain. To provide an overview of the surface properties of the interfaces formed by the complexes of Der p 1-10B9 and Der p 1-5H8, along with the complexes of 4C1 with Der p 1 and Der f 1, a broad analysis of the surfaces and hydrogen bonds of all complexes of Fab-protein or Fab-peptide was performed. This work provides detailed insight into the cross-reactive and specific allergen-Ab interactions in group 1 mite allergens. The surface data of Fab-protein and Fab-peptide interfaces can be used in the design of conformational epitopes with reduced Ab binding for immunotherapy.


Asunto(s)
Anticuerpos Monoclonales/química , Complejo Antígeno-Anticuerpo/química , Antígenos Dermatofagoides/química , Proteínas de Artrópodos/química , Cisteína Endopeptidasas/química , Fragmentos Fab de Inmunoglobulinas/química , Péptidos/química , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales/inmunología , Complejo Antígeno-Anticuerpo/inmunología , Antígenos Dermatofagoides/inmunología , Antígenos Dermatofagoides/aislamiento & purificación , Proteínas de Artrópodos/inmunología , Proteínas de Artrópodos/aislamiento & purificación , Sitios de Unión , Cristalografía por Rayos X , Cisteína Endopeptidasas/inmunología , Cisteína Endopeptidasas/aislamiento & purificación , Epítopos/química , Epítopos/inmunología , Enlace de Hidrógeno , Fragmentos Fab de Inmunoglobulinas/inmunología , Modelos Moleculares , Datos de Secuencia Molecular , Péptidos/inmunología , Unión Proteica , Estructura Secundaria de Proteína , Pyroglyphidae/química , Pyroglyphidae/inmunología , Alineación de Secuencia
16.
Protein Sci ; 23(10): 1359-68, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25044180

RESUMEN

The availability of purified and active protein is the starting point for the majority of in vitro biomedical, biochemical, and drug discovery experiments. The use of polyhistidine affinity tags has resulted in great increases of the efficiency of the protein purification process, but can negatively affect structure and/or activity measurements. Similarly, buffer molecules may perturb the conformational stability of a protein or its activity. During the determination of the structure of a Gcn5-related N-acetyltransferase (GNAT) from Pseudomonas aeruginosa (PA4794), we found that both HEPES and the polyhistidine affinity tag bind (separately) in the substrate-binding site. In the case of HEPES, the molecule induces conformational changes in the active site, but does not significantly affect enzyme activity. In contrast, the uncleaved His-tag does not induce major conformational changes but acts as a weak competitive inhibitor of peptide substrate. In two other GNAT enzymes, we observed that the presence of the His-tag had a strong influence on the activity of these proteins. The influence of protein preparation on functional studies may affect the reproducibility of experiments in other laboratories, even when changes between protocols seem at first glance to be insignificant. Moreover, the results presented here show how critical it is to adjust the experimental conditions for each protein or family of proteins, and investigate the influence of these factors on protein activity and structure, as they may significantly alter the effectiveness of functional characterization and screening methods. Thus, we show that a polyhistidine tag and the buffer molecule HEPES bind in the substrate-binding site and influence the conformation of the active site and the activity of GNAT acetyltransferases. We believe that such discrepancies can influence the reproducibility of some experiments and therefore could have a significant "ripple effect" on subsequent studies.


Asunto(s)
Acetiltransferasas/química , Proteínas Bacterianas/química , Investigación Biomédica/métodos , Histidina/química , Pseudomonas aeruginosa/enzimología , Acetiltransferasas/metabolismo , Proteínas Bacterianas/metabolismo , Sitios de Unión , Tampones (Química) , Dominio Catalítico , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Secundaria de Proteína , Pseudomonas aeruginosa/química , Reproducibilidad de los Resultados
17.
Nucleic Acids Res ; 42(7): 4160-79, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24464998

RESUMEN

Ribonuclease H-like (RNHL) superfamily, also called the retroviral integrase superfamily, groups together numerous enzymes involved in nucleic acid metabolism and implicated in many biological processes, including replication, homologous recombination, DNA repair, transposition and RNA interference. The RNHL superfamily proteins show extensive divergence of sequences and structures. We conducted database searches to identify members of the RNHL superfamily (including those previously unknown), yielding >60 000 unique domain sequences. Our analysis led to the identification of new RNHL superfamily members, such as RRXRR (PF14239), DUF460 (PF04312, COG2433), DUF3010 (PF11215), DUF429 (PF04250 and COG2410, COG4328, COG4923), DUF1092 (PF06485), COG5558, OrfB_IS605 (PF01385, COG0675) and Peptidase_A17 (PF05380). Based on the clustering analysis we grouped all identified RNHL domain sequences into 152 families. Phylogenetic studies revealed relationships between these families, and suggested a possible history of the evolution of RNHL fold and its active site. Our results revealed clear division of the RNHL superfamily into exonucleases and endonucleases. Structural analyses of features characteristic for particular groups revealed a correlation between the orientation of the C-terminal helix with the exonuclease/endonuclease function and the architecture of the active site. Our analysis provides a comprehensive picture of sequence-structure-function relationships in the RNHL superfamily that may guide functional studies of the previously uncharacterized protein families.


Asunto(s)
Ribonucleasa H/química , Ribonucleasa H/clasificación , Análisis por Conglomerados , Evolución Molecular , Exonucleasas/clasificación , Filogenia , Estructura Terciaria de Proteína , Ribonucleasa H/genética , Alineación de Secuencia
18.
J Biol Chem ; 288(52): 36890-901, 2013 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-24253038

RESUMEN

The incidence of peanut allergy continues to rise in the United States and Europe. Whereas exposure to the major allergens Ara h 1, 2, 3, and 6 can cause fatal anaphylaxis, exposure to the minor allergens usually does not. Ara h 8 is a minor allergen. Importantly, it is the minor food allergens that are thought to be responsible for oral allergy syndrome (OAS), in which sensitization to airborne allergens causes a Type 2 allergic reaction to ingested foods. Furthermore, it is believed that similar protein structure rather than a similar linear sequence is the cause of OAS. Bet v 1 from birch pollen is a common sensitizing agent, and OAS results when patients consume certain fruits, vegetables, tree nuts, and peanuts. Here, we report the three-dimensional structure of Ara h 8, a Bet v 1 homolog. The overall fold is very similar to that of Bet v 1, Api g 1 (celery), Gly m 4 (soy), and Pru av 1 (cherry). Ara h 8 binds the isoflavones quercetin and apigenin as well as resveratrol avidly.


Asunto(s)
Alérgenos/química , Antígenos de Plantas/química , Arachis , Proteínas de Plantas/química , Alérgenos/genética , Alérgenos/inmunología , Antígenos de Plantas/genética , Antígenos de Plantas/inmunología , Apium/química , Apium/genética , Apium/inmunología , Betula/química , Betula/genética , Betula/inmunología , Hipersensibilidad a los Alimentos/genética , Hipersensibilidad a los Alimentos/inmunología , Humanos , Proteínas de Plantas/genética , Proteínas de Plantas/inmunología , Unión Proteica , Estructura Terciaria de Proteína , Quercetina/química , Glycine max/química , Glycine max/genética , Glycine max/inmunología , Homología Estructural de Proteína
19.
J Biol Chem ; 288(42): 30223-30235, 2013 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-24003232

RESUMEN

The Gcn5-related N-acetyltransferase (GNAT) superfamily is a large group of evolutionarily related acetyltransferases, with multiple paralogs in organisms from all kingdoms of life. The functionally characterized GNATs have been shown to catalyze the transfer of an acetyl group from acetyl-coenzyme A (Ac-CoA) to the amine of a wide range of substrates, including small molecules and proteins. GNATs are prevalent and implicated in a myriad of aspects of eukaryotic and prokaryotic physiology, but functions of many GNATs remain unknown. In this work, we used a multi-pronged approach of x-ray crystallography and biochemical characterization to elucidate the sequence-structure-function relationship of the GNAT superfamily member PA4794 from Pseudomonas aeruginosa. We determined that PA4794 acetylates the Nε amine of a C-terminal lysine residue of a peptide, suggesting it is a protein acetyltransferase specific for a C-terminal lysine of a substrate protein or proteins. Furthermore, we identified a number of molecules, including cephalosporin antibiotics, which are inhibitors of PA4794 and bind in its substrate-binding site. Often, these molecules mimic the conformation of the acetylated peptide product. We have determined structures of PA4794 in the apo-form, in complexes with Ac-CoA, CoA, several antibiotics and other small molecules, and a ternary complex with the products of the reaction: CoA and acetylated peptide. Also, we analyzed PA4794 mutants to identify residues important for substrate binding and catalysis.


Asunto(s)
Acetiltransferasas , Proteínas Bacterianas , Cefalosporinas/química , Inhibidores Enzimáticos/química , Pseudomonas aeruginosa/enzimología , Acetilcoenzima A , Acetiltransferasas/antagonistas & inhibidores , Acetiltransferasas/química , Antibacterianos/química , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/química , Sitios de Unión , Cristalografía por Rayos X , Lisina/química , Estructura Terciaria de Proteína
20.
Mol Immunol ; 56(4): 794-803, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23969108

RESUMEN

The allergen Act d 11, also known as kirola, is a 17 kDa protein expressed in large amounts in ripe green and yellow-fleshed kiwifruit. Ten percent of all kiwifruit-allergic individuals produce IgE specific for the protein. Using X-ray crystallography, we determined the first three-dimensional structures of Act d 11, produced from both recombinant expression in Escherichia coli and from the natural source (kiwifruit). While Act d 11 is immunologically correlated with the birch pollen allergen Bet v 1 and other members of the pathogenesis-related protein family 10 (PR-10), it has low sequence similarity to PR-10 proteins. By sequence Act d 11 appears instead to belong to the major latex/ripening-related (MLP/RRP) family, but analysis of the crystal structures shows that Act d 11 has a fold very similar to that of Bet v 1 and other PR-10 related allergens regardless of the low sequence identity. The structures of both the natural and recombinant protein include an unidentified ligand, which is relatively small (about 250 Da by mass spectrometry experiments) and most likely contains an aromatic ring. The ligand-binding cavity in Act d 11 is also significantly smaller than those in PR-10 proteins. The binding of the ligand, which we were not able to unambiguously identify, results in conformational changes in the protein that may have physiological and immunological implications. Interestingly, the residue corresponding to Glu45 in Bet v 1 (Glu46), which is important for IgE binding to the birch pollen allergen, is conserved in Act d 11, even though it is not in other allergens with significantly higher sequence identity to Bet v 1. We suggest that the so-called Gly-rich loop (or P-loop), which is conserved in all PR-10 allergens, may be responsible for IgE cross-reactivity between Bet v 1 and Act d 11.


Asunto(s)
Actinidia/inmunología , Alérgenos/inmunología , Antígenos de Plantas/inmunología , Frutas/inmunología , Proteínas de Plantas/inmunología , Actinidia/genética , Actinidia/fisiología , Alérgenos/química , Alérgenos/genética , Secuencia de Aminoácidos , Antígenos de Plantas/química , Antígenos de Plantas/genética , Biología Computacional , Frutas/genética , Frutas/fisiología , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas de Plantas/química , Proteínas de Plantas/genética , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Serotonina/química , Serotonina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA