Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Robot AI ; 10: 1234835, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37810203

RESUMEN

This paper presents an in-pipe robot with three underactuated parallelogram crawler modules, which can automatically shift its body shape when encountering obstacles. The shape-shifting movement is achieved by only a single actuator through a simple differential mechanism by only combining a pair of spur gears. It can lead to downsizing, cost reduction, and simplification of control for adaptation to obstacles. The parallelogram shape does not change the total belt circumference length, thus, a new mechanism to maintain the belt tension is not necessary. Moreover, the proposed crawler can form the anterior-posterior symmetric parallelogram relative to the moving direction, which generates high adaptability in both forward and backward directions. However, whether the locomotion or shape-shifting is driven depends on the gear ratio of the differential mechanism because their movements are only switched mechanically. Therefore, to clarify the requirements of the gear ratio for the passive adaptation, two outputs of each crawler mechanism (torques of the flippers and front pulley) are quasi-statically analyzed, and how the environmental and design parameters influence the robot performance are verified by real experiments. From the experiments, although the robot could not adapt to the stepped pipe in vertical section, it successfully shifted its crawler's shape to parallelogram in horizontal section only with our simulated output ratio.

2.
Bioinspir Biomim ; 18(6)2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37873602

RESUMEN

This paper presents a method which avoids the common practice of using a complex coupled snake robot model and performing kinematic analysis for control in cluttered environments. Instead, we introduce a completely decoupled dynamical Bayesian formulation with respect to interacted snake robot links and environmental objects, which requires much lower complexity for efficient and robust control. When a snake robot does not interact with obstacles, it runs by a simple serpenoid controller. However, when it exhibits interaction with environments, defined as close proximity or collision with targets and/or obstacles, we extend the conventional Bayesian framework by modeling such interactions in terms of stimuli. The proposed 'multi-neural-stimulus function' represents the cumulative effect of both external environmental influences and internal constraints of the snake robot. It implicitly handles the 'unexpected collision' problem and thus solve the difficult data association and shape adjustment problems for snake robot control in an innovative way. Preliminary experimental results have demonstrated promising performance of the proposed method comparing with the state-of-the-art.


Asunto(s)
Robótica , Robótica/métodos , Teorema de Bayes , Fenómenos Biomecánicos
3.
Biomimetics (Basel) ; 8(5)2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37754184

RESUMEN

Continuum robots have good adaptability in unstructured and complex environments. However, affected by their inherent nature of flexibility and slender structure, there are challenges in high-precision motion and load. Thus, stiffness adjustment for continuum robots has consistently attracted the attention of researchers. In this paper, a stiffness adjustment mechanism (SAM) is proposed and built in a growth-controllable continuum robot (GCCR) to improve the motion accuracy in variable scale motion. The self-stiffness adjustment is realized by antagonism through cable force transmission during the length change of the continuum robot. With a simple structure, the mechanism has a scarce impact on the weight and mass distribution of the robot and required no independent actuators for stiffness adjustment. Following this, a static model considering gravity and end load is established. The presented theoretical static model is applicable to predict the shape deformations of robots under different loads. The experimental validations showed that the maximum error ratio is within 5.65%. The stiffness of the robot can be enhanced by nearly 79.6%.

4.
ISA Trans ; 142: 615-625, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37541855

RESUMEN

This article focuses on addressing three practical issues encountered when applying a data-driven model-free adaptive control (MFAC) approach to mobile robots. The first practical issue lies in a common assumption in MFAC schemes that the sign of all elements in pseudo-partial derivative (PPD) should be constant, while it cannot be satisfied if omnidirectional mobile manipulators (OMMs) move with platform rotation. To solve this problem, a new coordinate frame is introduced, which is crucial for applying MFAC to any mobile robots with rotation. The second one is that the initial value setting method for estimation of PPD is unclear. Improper settings may easily lead to control system instability. An initial value setting method for estimation of PPD is proposed with explicit physical interpretation. Lastly, applying the typical MFAC scheme directly to OMM fails to converge well to the desired trajectory. To tackle this, a new data-driven MFAC controller is proposed by incorporating a sliding mode control. Finally, experimental tests on an OMM are carried out to verify the effectiveness of the proposed control scheme. To the best of our knowledge, this is the first MFAC scheme that has been experimentally verified on a prototype mobile robot with rotation.

5.
Front Robot AI ; 9: 899850, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35783025

RESUMEN

Inchworm-styled locomotion is one of the simplest gaits for mobile robots, which enables easy actuation, effective movement, and strong adaptation in nature. However, an agile inchworm-like robot that realizes versatile locomotion usually requires effective friction force manipulation with a complicated actuation structure and control algorithm. In this study, we embody a friction force controller based on the deformation of the robot body, to realize bidirectional locomotion. Two kinds of differential friction forces are integrated into a beam-like soft robot body, and along with the cyclical actuation of the robot body, two locomotion gaits with opposite locomotion directions can be generated and controlled by the deformation process of the robot body, that is, the dynamic gaits. Based on these dynamic gaits, two kinds of locomotion control schemes, the amplitude-based control and the frequency-based control, are proposed, analyzed, and validated with both theoretical simulations and prototype experiments. The soft inchworm crawler achieves the versatile locomotion result via a simple system configuration and minimalist actuation input. This work is an example of using soft structure vibrations for challenging robotic tasks.

6.
IEEE Trans Cybern ; 52(6): 4334-4345, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33095733

RESUMEN

Active disturbance rejection control (ADRC) is an efficient control technique to accommodate both internal uncertainties and external disturbances. In the typical ADRC framework, however, the design philosophy is to "force" the system dynamics into a double-integral form by an extended state observer (ESO) and then the controller is designed. Especially, the systems' physical structure has been neglected in such a design paradigm. In this article, a new ADRC framework is proposed by incorporating at a fundamental level the physical structure of the Euler-Lagrange (EL) systems. In particular, the differential feedback gain can be selected considerably small or even 0, due to the effective exploitation of the system's internal damping. The design principle stems from an analysis of the energy balance of EL systems, yielding a physically interpretable design. Moreover, the exploitation of the system's internal damping is thoroughly discussed, which is of practical significance for applications of the proposed design. Besides, a sliding-mode ESO is designed to improve the estimation performance over traditional linear ESO. Finally, the proposed control framework is illustrated through tracking control of an omnidirectional mobile robot. Extensive experimental tests are conducted to verify the proposed design as well as the discussions.

7.
Front Robot AI ; 8: 631242, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33693032

RESUMEN

This paper proposes an underactuated grippers mechanism that grasps and pulls in different types of objects. These two movements are generated by only a single actuator while two independent actuators are used in conventional grippers. To demonstrate this principle, we have developed two kinds of gripper by different driving systems: one is driven by a DC motor with planetary gear reducers and another is driven by pneumatic actuators with branch tubes as a differential. Each pulling-in mechanism in the former one and the latter one is achieved by a belt-driven finger surface and a linear slider with an air cylinder, respectively. The motor-driven gripper with planetary gear reducers can pull-up the object after grasping. However, the object tends to fall when placing because it opens the finger before pushing out the object during the reversed movement. In addition, the closing speed and the picking-up speed of the fingers are slow due to the high reduction gear. To solve these drawbacks, a new pneumatic gripper by combining three valves, a speed control valve, a relief valve, and non-return valves, is proposed. The proposed pneumatic gripper is superior in the sense that it can perform pulling-up after grasping the object and opening the fingers after pushing-out the object. In the present paper, a design methodology of the different underactuated grippers that can not only grasp but also pull up objects is discussed. Then, to examine the performance of the grippers, experiments were conducted using various objects with different rigidity, shapes, size, and mass, which may be potentially available in real applications.

8.
ISA Trans ; 101: 335-345, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31983417

RESUMEN

This paper presents a structure-improved extended state observer (SESO) based trajectory tracking control scheme with application to an omnidirectional mobile robot. To alleviate the initial peaking phenomenon of the traditional extended state observer (TESO), a SESO with reduced order is proposed by improving the structure of TESO. Moreover, the designed SESO can achieve superior estimation performances. The total disturbances are estimated by SESO and then compensated in the controller. Then a phase-based nonlinear proportional-differential controller with time-varying gains is applied for high trajectory tracking performance. The stability of SESO and the closed-loop system are analyzed, respectively. Finally, the effectiveness of the proposed control scheme is validated through simulations in both frequency domain and time domain as well as experimental tests.

9.
Robotics Biomim ; 4(1): 9, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29152450

RESUMEN

In this paper, a framework for analyzing the motion resulting from the interaction between a snake robot and an object is shown. Metrics are derived to study the motion of the object and robot, showing that the addition of passive wheels to the snake robot helps to minimize slippage. However, the passive wheels do not have a significant impact on the force exerted onto the object. This puts snake robots in a similar framework as robotic arms, while considering special properties exclusive to snake robots (e.g., lack of a fixed-base, interaction with the environment through friction). It is also shown that the configuration (shape) of the snake robot, parameterized with the polar coordinates of the robot's COM, plays an important role in the interaction with the object. Two examples, a snake robot with two joints and another with three joints, are studied to show the applicability of the model.

10.
Robotics Biomim ; 3(1): 20, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27942433

RESUMEN

For determining whether kidnapping has happened and which type of kidnapping it is while a robot performs autonomous tasks in an unknown environment, a double guarantee kidnapping detection (DGKD) method has been proposed. The good performance of DGKD in a relative small environment is shown. However, a limitation of DGKD is found in a large-scale environment by our recent work. In order to increase the adaptability of DGKD in a large-scale environment, an improved method called probabilistic double guarantee kidnapping detection is proposed in this paper to combine probability of features' positions and the robot's posture. Simulation results demonstrate the validity and accuracy of the proposed method.

11.
Robotics Biomim ; 3: 10, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27446772

RESUMEN

This paper studies passivity-based trajectory tracking control of an omnidirectional mobile robot. The proposed control design is simple to be implemented in practice, because of an effective exploitation of the structure of robot dynamics. First, the passivity property of the prototype robot is analyzed. Then the control system is designed based on the energy shaping plus damping approach. We find that the prototype robot itself has enough damping forces. As a result, only energy shaping is needed in our proposed controller, while the damping injection is unnecessary for our robot. In other words, the disadvantages of differential feedback, such as amplifying the measurement noise, can be avoided. Globally asymptotic stability is guaranteed. Both simulations and experimental results show the effectiveness of the proposed control design.

12.
Robotics Biomim ; 3: 11, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27453809

RESUMEN

Pipe robots can perform inspection tasks to alleviate the damage caused by the pipe problems. Usually, the pipe robots carry batteries or use a power cable draining power from a vehicle that has many equipments for exploration. Nevertheless, the energy is limited for the whole inspection task and cannot keep the inspection time too long. In this paper, we use the total input energy as the cost function and a more accurate DC motor model to generate an optimal energy-efficient velocity control for a screw-drive pipe robot to make use of the limited energy in field environment. We also propose a velocity selection strategy that includes the actual velocity capacity of the motor, according to the velocity ratio [Formula: see text], to keep the robot working in safe region and decrease the energy dissipation. This selection strategy considers three situations of the velocity ratio [Formula: see text] and has a wide range of application. Simulations are conducted to compare the proposed method with the sinusoidal control and loss minimization control (minimization of copper losses of the motor), and results are discussed in this paper.

13.
Robotics Biomim ; 3: 8, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27358763

RESUMEN

Gaining high mobility on versatile terrains is a crucial target for designing a mobile robot toward tasks such as search and rescue, scientific exploration, and environment monitoring. Inspired by dextrous limb motion of animals, a novel form of locomotion has been established in our previous study, by proposing an eccentric paddle mechanism (ePaddle) for integrating paddling motion into a traditional wheeled mechanism. In this paper, prototypes of an ePaddle mechanism and an ePaddle-based quadruped robot are presented. Several locomotion modes, including wheeled rolling, legged crawling, legged race-walking, rotational paddling, oscillating paddling, and paddle-aided rolling, are experimentally verified on testbeds with fabricated prototypes. Experimental results confirm that paddle's motion is useful in all the locomotion modes.

14.
Robotics Biomim ; 3: 9, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27419002

RESUMEN

A novel eccentric paddle mechanism based on the epicyclic gear mechanism (ePaddle-EGM) has been proposed to enhance the mobility of amphibious robot for multi-terrain tasks with diverse locomotion gaits. This paper presents a brief description for this mechanism. Based on the feature of ePaddle-EGM, a unique non-reciprocating legged gait planning method is proposed. This method could minimize the negative effect of backlash between gear mesh in the epicyclic gear mechanism. Furthermore, the stable tripod gait for the ePaddle-EGM-based hexapod robot is designed. One of the most important characteristics of this tripod gait is that it is capable of realizing discontinuous locomotion of the body through continuous and unidirectional rotation of joints. In this way, the velocity shock is eliminated and the locomotion accuracy is guaranteed. A series of simulations were conducted to validate the advantages of the robot's movement.

15.
Sensors (Basel) ; 15(4): 7512-36, 2015 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-25825974

RESUMEN

Maintaining contact between the robot and plume is significant in chemical plume tracing (CPT). In the time immediately following the loss of chemical detection during the process of CPT, Track-Out activities bias the robot heading relative to the upwind direction, expecting to rapidly re-contact the plume. To determine the bias angle used in the Track-Out activity, we propose an online instance-based reinforcement learning method, namely virtual trail following (VTF). In VTF, action-value is generalized from recently stored instances of successful Track-Out activities. We also propose a collaborative VTF (cVTF) method, in which multiple robots store their own instances, and learn from the stored instances, in the same database. The proposed VTF and cVTF methods are compared with biased upwind surge (BUS) method, in which all Track-Out activities utilize an offline optimized universal bias angle, in an indoor environment with three different airflow fields. With respect to our experimental conditions, VTF and cVTF show stronger adaptability to different airflow environments than BUS, and furthermore, cVTF yields higher success rates and time-efficiencies than VTF.


Asunto(s)
Algoritmos , Temperatura
16.
Rev Sci Instrum ; 85(5): 055004, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24880405

RESUMEN

An electronic nose (e-nose) was designed to classify Chinese liquors of the same aroma style. A new method of feature reduction which combined feature selection with feature extraction was proposed. Feature selection method used 8 feature-selection algorithms based on information theory and reduced the dimension of the feature space to 41. Kernel entropy component analysis was introduced into the e-nose system as a feature extraction method and the dimension of feature space was reduced to 12. Classification of Chinese liquors was performed by using back propagation artificial neural network (BP-ANN), linear discrimination analysis (LDA), and a multi-linear classifier. The classification rate of the multi-linear classifier was 97.22%, which was higher than LDA and BP-ANN. Finally the classification of Chinese liquors according to their raw materials and geographical origins was performed using the proposed multi-linear classifier and classification rate was 98.75% and 100%, respectively.

17.
Bioinspir Biomim ; 9(1): 016003, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24343201

RESUMEN

This paper presents a locomotion control based on central pattern generator (CPG) of a snake-like robot. The main point addressed in this paper is a method that produces a smooth transition of the body shape of a snake-like robot. Body shape transition is important for snake-like robot locomotion to adapt to different space widths and also for obstacle avoidance. By manipulating the phase difference of the CPG outputs instantly, it will results in a sharp point or discontinuity which lead to an unstable movement of the snake-like robot. To tackle the problem, we propose a way of controlling the body shape: by incorporating activation function in the phase oscillator CPG model. The simplicity of the method promises an easy implementation and simple control. Simulation results and torque analysis confirm the effectiveness of the proposed control method and thus, can be used as a locomotion control in various potential applications of a snake-like robot.


Asunto(s)
Biomimética/instrumentación , Generadores de Patrones Centrales/fisiología , Locomoción/fisiología , Redes Neurales de la Computación , Postura/fisiología , Robótica/instrumentación , Serpientes/fisiología , Animales , Biomimética/métodos , Simulación por Computador , Diseño Asistido por Computadora , Diseño de Equipo , Análisis de Falla de Equipo , Retroalimentación Fisiológica/fisiología , Modelos Biológicos , Movimiento (Física) , Robótica/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA