Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
BMC Gastroenterol ; 24(1): 265, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39143462

RESUMEN

BACKGROUND: The activity and number of immune cells in the tumor microenvironment are closely related to the overall survival of patients with hepatocellular carcinoma (HCC). The sex-determining region Y-box 4 (SOX4) gene is abnormally expressed in various tumor tissues and is critical for tumor development. However, the correlation between SOX4 expression in HCC and tumor immunity is unclear. METHODS: SOX4 expression was explored using data from The Cancer Genome Atlas, and UALCAN databases. Real-time reverse transcription quantitative and western blotting were used to analyze SOX4 expression in several liver cancer cell lines. Additionally, correlations among SOX4 expression, cancer immune characteristics, and infiltrated immune cell gene marker sets in patients with HCC were analyzed using data from the Tumor Immune Estimation Resource, Gene Expression Profiling Interactive Analysis, and Tumor-Immune System Interactions databases. Moreover, we evaluated SOX4 expression in HCC tissues and the correlation of SOX4 expression with survival rate. Subsequently, noncoding RNAs (ncRNAs) responsible for SOX4 overexpression were identified using expression, correlation, and survival analyses. RESULTS: SOX4 expression was significantly upregulated in HCC and correlated with a poor prognosis. Additionally, SOX4 upregulation in HCC positively correlated with immune cell infiltration, several biomarkers of immune cells, and immune checkpoint expression. Finally, the MCM3AP-AS1/hsa-miR-204-5p axis was identified as the most likely upstream ncRNA-related pathway for SOX4 in HCC. These results indicated that ncRNA-mediated upregulation of SOX4 correlated with the immune infiltration level and poor prognosis in HCC. Our findings provide new directions for the development of novel immunotherapeutic targets for HCC.


Asunto(s)
Carcinoma Hepatocelular , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas , Factores de Transcripción SOXC , Regulación hacia Arriba , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/mortalidad , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/mortalidad , Factores de Transcripción SOXC/genética , Factores de Transcripción SOXC/metabolismo , Pronóstico , Línea Celular Tumoral , Microambiente Tumoral/inmunología , Microambiente Tumoral/genética , ARN no Traducido/genética , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Masculino , Femenino , Tasa de Supervivencia
2.
J Ethnopharmacol ; 328: 117985, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38417600

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Of all primary liver cancer cases, hepatocellular carcinoma (HCC) accounts for about 90%. Most patients with HCC receive a diagnosis in the medium-to-late stages or with chronic liver disease, have lost the opportunity for radical treatment, such as surgical resection, and their 5-year survival rate is low. Qizhu Anticancer Prescription (QZACP) is an empirical formula composed of traditional Chinese herbs that can clinically relieve HCC symptoms, inhibit the progression of HCC, reduce recurrence rate, and prolong survival; however, its exact mode of action remains unknown. AIM OF THE STUDY: This study's purpose was to investigate the mode of action of QZACP in the prevention and treatment of HCC. MATERIALS AND METHODS: Initially, drug components in the QZACP decoction were analyzed using high-resolution mass spectrometry. A subcutaneous tumor xenograft model in nude mice was constructed to further analyze the active components of QZACP that had entered tumor tissues through oral administration. Potential targets of QZACP in the prevention and treatment of HCC were identified and then confirmed in vivo via network pharmacology and molecular docking. In addition, regulatory effects of QZACP on HCC cell proliferation and the cell cycle were detected using a CCK-8 assay and flow cytometry. RESULTS: High-resolution mass spectrometry revealed that the QZACP decoction contained deacetyl asperulosidic acid methyl ester (DAAME), paeoniflorin, calycosin-7-glucoside, liquiritin, glycyrrhizic acid, astragaloside IV, saikosaponin A, curdione, and atractylenolide II. In nude mice, QZACP could effectively inhibit the growth of subcutaneous tumors, where DAAME, paeoniflorin, liquiritin, and glycyrrhizic acid could enter liver cancer tissues after oral administration. Among these, DAAME was the most highly expressed in HCC tissues and may be an important active component of QZACP for inhibiting HCC. Utilizing network pharmacology, the targets of action of these four drug components were identified. After verification using western blotting, STAT3, VEGFA, JUN, FGF2, BCL2L1, AR, TERT, MMP7, MMP1, ABCB1, CA9, and ESR2 were identified as targets of QZACP inhibition in HCC. In vitro experiments revealed that QZACP inhibited the proliferation of HCC cells while inducing G0/G1 phase cell cycle arrest. In vivo experiments demonstrated that DAAME significantly inhibited HCC growth. After intersection of the 24 DAAME targets predicted using network pharmacology with the 435 HCC disease targets, only CA9 was identified as a DAAME-HCC crossover target. Molecular docking results revealed that the binding site of DAAME and CA9 had good stereo-complementarity with a docking score of -8.1 kcal/mol. Western blotting and immunohistochemical results also confirmed that DAAME significantly decreased CA9 protein expression in HCC. CONCLUSIONS: QZACP inhibits HCC by reducing the expression of STAT3, VEGFA, JUN, FGF2, BCL2L1, AR, TERT, MMP7, MMP1, ABCB1, CA9, and ESR2. DAAME may be an important active component of QZACP for the prevention and treatment of HCC, inhibiting it by targeting the expression of CA9.


Asunto(s)
Carcinoma Hepatocelular , Medicamentos Herbarios Chinos , Glucósidos , Neoplasias Hepáticas , Monoterpenos , Animales , Ratones , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Metaloproteinasa 1 de la Matriz , Metaloproteinasa 7 de la Matriz , Ratones Desnudos , Neoplasias Hepáticas/tratamiento farmacológico , Factor 2 de Crecimiento de Fibroblastos , Ácido Glicirrínico , Simulación del Acoplamiento Molecular , Farmacología en Red , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico
3.
Heliyon ; 9(11): e22089, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38053871

RESUMEN

Background: Qizhu Anti-Cancer Recipe (QACR) is a traditional Chinese medicine widely used in treating several liver diseases. However, its function and the relevant mechanism underlying its effect in treating hepatocellular carcinoma (HCC) remain unknown. The aim of this study was to explore the effect of QACR in HCC, which are expected to be a potential therapeutic scheme for HCC. Materials and methods: The chemical compositions of QACR were determined by liquid chromatography/quadrupole time-of-fight mass spectrometry (LC-QTOF-MS). The anoikis-resistant HCC cell proliferation and angiopoiesis were detected using the cell counting kit 8 (CCK8) assay, trypan blue, calcein AM/EthD-1, flow cytometer, Western blot, and tube formation assays. An orthotopic xenograft mouse model was established to evaluate the in vivo effects of the QACR. The expression of proliferating cell nuclear antigen (PCNA), Bcl-2, CD31, caspase-3, caspase-8, caspase-9, PARP-1, DFF40, phospho-c-Jun NH2-terminal kinase (p-JNK), and JNK was assessed using Western blot and immunohistochemical analysis. Results: QACR reduced the growth and tube formation of anoikis-resistant HCC cells and enhanced cell apoptosis in vitro. In the orthotopic xenograft mouse models, QACR suppressed the tumorigenesis of HCC in vivo. Mechanistically, QACR modulated the JNK pathway. The JNK inhibitor (SP600125) reverses the inhibitory effects of QACR on anoikis-resistant HCC cell proliferation and angiopoiesis. Conclusion: Our study suggests that QACR suppresses the proliferation and angiopoiesis of anoikis-resistant HCC cells by activating the JNK pathway. Therefore, QACR is a promising new therapeutic strategy for treating hepatocellular carcinoma.

4.
Sci Rep ; 13(1): 15735, 2023 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-37735184

RESUMEN

Peripheral blood mononuclear cell (PBMC) genes reflect the host immune status and could be suitable for evaluating the prognosis of patients with hepatocellular carcinoma (HCC), for which a reliable biomarker is unavailable and the host immune responses to cancer cells. This study aimed to investigate prognostically relevant genes in HCC PBMCs and assessed whether their expression represents tumor immune infiltration. Gene expression in PBMCs from patients with advanced or terminal HCC who had survived or died was examined. Correlations among FAT atypical cadherin 4 (FAT4) expression, cancer immune characteristics, and infiltrated immune cell gene marker sets were analyzed. FAT4 expression was lower in the PBMCs of patients with advanced or terminal HCC who had died than that in patients who survived. Kaplan-Meier analysis indicated that FAT4 downregulation was associated with a relatively poor prognosis while overexpression was positively correlated with immune cell infiltration, several immune cell markers, and immune checkpoint expression. Hsa-miR-93-5p represented the most probable upstream microRNA of FAT4. Thus, upregulated FAT4 in PBMCs and HCC tissues might indicate a favorable prognosis and increased immune cell infiltration, while miRNA-93-5p could be a modulator of FAT4 expression. Collectively, these findings suggest novel immunotherapy targets for HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , Humanos , Carcinoma Hepatocelular/genética , Leucocitos Mononucleares , Neoplasias Hepáticas/genética , Pronóstico , Muerte , Cadherinas , Proteínas Supresoras de Tumor , MicroARNs/genética
5.
Biomed Pharmacother ; 165: 115131, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37429231

RESUMEN

With the obesity epidemic, nonalcoholic steatohepatitis (NASH) is emerging as the fastest growing potential cause of hepatocellular carcinoma (HCC). NASH has been demonstrated to establish a tumor-prone liver microenvironment where both innate and adaptive immune systems are involved. As the most typical anti-tumor effector, the cell function of CD8+ T cells is remodeled by chronic inflammation, metabolic alteration, lipid toxicity and oxidative stress in the liver microenvironment along the NASH to HCC transition. Unexpectedly, NASH may blunt the effect of immune checkpoint inhibitor therapy against HCC due to the dysregulated CD8+ T cells. Growing evidence has supported that NASH is likely to facilitate the state transition of CD8+ T cells with changes in cell motility, effector function, metabolic reprogramming and gene transcription according to single-cell sequencing. However, the mechanistic insight of CD8+ T cell states in the NASH-driven HCC is not comprehensive. Herein, we focus on the characterization of state phenotypes of CD8+ T cells with both functional and metabolic signatures in NASH-driven fibrosis and HCC. The NASH-specific CD8+ T cells are speculated to mainly have a dualist effect, where its aberrant activated phenotype sustains chronic inflammation in NASH but subsequently triggers its exhaustion in HCC. As the exploration of CD8+ T cells on the distribution and phenotypic shifts will provide a new direction for the intervention strategies against HCC, we also discuss the implications for targeting different phenotypes of CD8+ T cells, shedding light on the personalized immunotherapy for NASH-driven HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Humanos , Carcinoma Hepatocelular/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Linfocitos T CD8-positivos , Neoplasias Hepáticas/genética , Inflamación/metabolismo , Inmunoterapia , Microambiente Tumoral
6.
BMC Gastroenterol ; 23(1): 234, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37438735

RESUMEN

BACKGROUND:  Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related deaths worldwide, and is characterized by insidious onset, rapid progression, and poor prognosis. Immunotherapy is a first-line treatment for advanced HCC. The identification of immune-related prognostic markers may be an effective strategy to predict and improve clinical response rate of immunotherapy. METHODS:  The DESeq2, edgeR, and limma R packages were used to compare the transcriptomes of HCC with different prognoses. Cancer-related databases such as UALCAN, TNMplot, GEPIA, muttarget and Human Protein Atlas (HPA), and the Kaplan-Meier Plotter platform were used to analyze the relationship between CLDN18 and the clinical characteristics, as well as prognosis of HCC. The co-expressed genes of CLDN18 were obtained from LinkedOmics platform, and GO functional enrichment and KEGG pathway analysis were performed. The CIBERSORT, TIMER, Timer 2.0 and TISIDB algorithms were used to analyze immune infiltration. RESULTS:  CLDN18 was differentially expressed in HCC patients with different prognoses, and its expression level in PBMC was positively correlated with the stage of BCLC. In addition, CLDN18 was significantly overexpressed in HCC tumor tissues compared to adjacent non-tumor tissues, which was consistent with PBMC sequencing results and immunohistochemical data from human protein profiles. CLDN18 was also positively correlated with HCC staging and grading, and high expression levels of CLDN18 predicted shorter overall survival. Functional annotation of CLDN18 in HCC revealed enrichment of the cellular senescence and protein activation cascade, along with biological processes such as cell cycle, inflammatory response, and cellular ketone metabolism. In addition, CLDN18 was also associated with tumor infiltrating immune cells, suppressive immune cell markers, T lymphocyte depletion and activation of HCC, and low expression of CLDN18 was associated with higher CD8 + T cell infiltration and better survival rates. CONCLUSIONS: CLDN18 is a potential prognostic marker and immunotherapeutic target for HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Pronóstico , Carcinoma Hepatocelular/genética , Leucocitos Mononucleares , Neoplasias Hepáticas/genética , Algoritmos , Claudinas
7.
Cell Death Discov ; 9(1): 189, 2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37353487

RESUMEN

Acute liver injury (ALI) is an acute inflammatory liver disease with a high mortality rate. Alternatively, activated macrophages (AAMs) have been linked to the inflammation and recovery of ALI. However, the mechanism underlying AAM death in ALI has not been studied sufficiently. We used liensinine (Lie) as a drug of choice after screening a library of small-molecule monomers with 1488 compounds from traditional Chinese remedies. In ALI, we evaluated the potential therapeutic effects and underlying mechanisms of action of the drug in ALI and found that it effectively inhibited RSL3-induced ferroptosis in AAM. Lie significantly reduced lipid peroxidation in RSL3-generated AAM. It also improved the survival rate of LPS/D-GalN-treated mice, reduced serum transaminase activity, suppressed inflammatory factor production, and may have lowered AAM ferroptosis in ALI. Lie also inhibited ferritinophagy and blocked Fe2+ synthesis. Following combined treatment with RSL3 and Lie, super-resolution microscopy revealed a close correlation between ferritin and LC3-positive vesicles in the AAM. The co-localization of ferritin and LC3 with LAMP1 was significantly reduced. These findings suggest that Lie may ameliorate ALI by inhibiting ferritinophagy and enhancing AMM resistance to ferroptosis by inhibiting autophagosome-lysosome fusion. Therefore, Lie may be used as a potential therapeutic agent for patients with ALI.

8.
Int J Oncol ; 62(3)2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36825585

RESUMEN

Hepatocellular carcinoma (HCC) is a lethal malignancy. Although considerable efforts have been made in recent years regarding treatments, effective therapeutic drugs for HCC remain insufficient. In the present study, polyphyllin VI was identified as a potential therapeutic drug for HCC by screening natural herbal compounds. The therapeutic effects of polyphyllin VI were assessed using Cell Counting Kit­8, lactate dehydrogenase release and colony formation assays. The occurrence of ferroptosis was determined by assessing lipid peroxidation by reactive oxygen species, malondialdehyde levels, intracellular ferrous iron levels, and the mRNA and protein levels of glutathione peroxidase 4 (GPX4). The migratory and invasive abilities of HCC cells were examined using wound healing and Transwell assays. The results revealed that polyphyllin VI inhibited the proliferation, invasion and metastasis of HCC cells (HCCLM3 and Huh7 cells) by inducing ferroptosis. In addition, through a network pharmacology­based approach and molecular docking analyses, it was found that polyphyllin VI may target the signal transducer and activator of transcription 3 (STAT3). HCC cells were treated with polyphyllin VI or a STAT3 inhibitor (Stattic), both of which exerted similar inhibitory effects on protein expression. Furthermore, immunofluorescence staining revealed that polyphyllin VI significantly inhibited the nuclear translocation of p­STAT3 in HCC cells. Mechanistically, by the overexpression of STAT3, it was confirmed that STAT3 binds to GPX4 and promotes its protein expression and transcription, whereas polyphyllin VI induces ferroptosis by inhibiting the STAT3/GPX4 axis. Subsequently, in vivo experiments revealed that polyphyllin VI inhibited the growth of subcutaneously transplanted tumors. On the whole, findings of the present study suggest that polyphyllin VI inhibits STAT3 phosphorylation, which inhibits GPX4 expression and induces the ferroptosis of HCC cells, eventually inhibiting their invasion and metastasis. These data suggest that polyphyllin VI may be a candidate for the prevention and treatment of HCC.


Asunto(s)
Carcinoma Hepatocelular , Ferroptosis , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Ensayos Analíticos de Alto Rendimiento , Factor de Transcripción STAT3/metabolismo , Simulación del Acoplamiento Molecular , Línea Celular Tumoral , Apoptosis
9.
Genomics ; 114(6): 110502, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36220554

RESUMEN

Most hepatocellular carcinomas (HCCs) are associated with hepatitis B virus infection (HBV) in China. Early detection of HCC can significantly improve prognosis but is not yet fully clinically feasible. This study aims to develop methods for detecting HCC and studying the carcinogenesis of HBV using plasma cell-free DNA (cfDNA) whole-genome sequencing (WGS) data. Low coverage WGS was performed for 452 participants, including healthy individuals, hepatitis B patients, cirrhosis patients, and HCC patients. Then the sequencing data were processed using various machine learning models based on cfDNA fragmentation profiles for cancer detection. Our best model achieved a sensitivity of 87.10% and a specificity of 88.37%, and it showed an increased sensitivity with higher BCLC stages of HCC. Overall, this study proves the potential of a non-invasive assay based on cfDNA fragmentation profiles for the detection and prognosis of HCC and provides preliminary data on the carcinogenic mechanism of HBV.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , China
10.
Exp Ther Med ; 24(1): 456, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35747157

RESUMEN

Liver cancer is a highly lethal malignancy. Despite considerable efforts made in recent years, the prognosis of patients with liver cancer remains poor. Curcuma zedoaria (known as Ezhu in Chinese) is widely prescribed in traditional Chinese medicine. Germacrone (GM) is a sesquiterpene constituent derived from the essential oil of Ezhu, and exerts anti-carcinogenic effects by inducing apoptosis in various cancer cells. The present study investigated the potential mechanism of GM in HepG2 cells. Cell Counting Kit-8, colony-formation and lactate dehydrogenase-release assays, as well as cell death assays using flow cytometry, were performed to evaluate HepG2 cell proliferation following GM treatment. HepG2 cells were transfected with caspase-3 small interfering RNA and then treated with GM. Caspase-3 expression levels were determined by reverse transcription-quantitative PCR and western blotting. The present study showed that GM inhibited the growth of HepG2 cells and induced the proteolytic cleavage of caspase 3, with concomitant cleavage of gasdermin E (GSDME), by markedly increasing the production of reactive oxygen species (ROS). This led to caspase 3-dependent cleavage of GSDME, thereby promoting pyroptosis in HepG2 cells. However, these changes were rescued by ROS scavengers, such as N-acetylcysteine. Furthermore, GM inhibited tumor growth by promoting the cleavage of caspase 3 and GSDME in HepG2 cell xenograft models. These results indicated that GM induced GSDME-dependent pyroptosis through caspase 3 activation, at least in part, by damaging the mitochondria and enhancing ROS production, thereby supporting the possible development of GM as a candidate for the prevention and treatment of liver cancer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA