Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 16(12)2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37374449

RESUMEN

A complex study was performed on a set of AlGaN/GaN high-electron-mobility transistor structures grown by metalorganic vapor phase epitaxy on miscut Si(111) wafers with a highly resistive epitaxial Si layer to investigate the influence of substrate miscut on their properties. The results showed that wafer misorientation had an influence on the strain evolution during the growth and surface morphology, and could have a strong impact on the mobility of 2D electron gas, with a weak optimum at 0.5° miscut angle. A numerical analysis revealed that the interface roughness was a main parameter responsible for the variation in electron mobility.

2.
Materials (Basel) ; 15(24)2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36556750

RESUMEN

The results of the study of the influence of Fe segregation into the unintentionally doped GaN channel layer in AlGaN/AlN/GaN heterostructures with Fe-doped GaN buffer layer on the electrical properties of two-dimensional electron gas are presented. A set of several samples was grown by metal-organic vapor-phase epitaxy and characterized by the van der Pauw method. The dependence of concentration and mobility of the two-dimensional electron gas on the channel layer thickness was analyzed theoretically by self-consistent solving of 1D Poisson and Schrödinger equations and scattering rate calculations within the momentum relaxation time approximation. It was found that both concentration and mobility decreases were responsible for the increase in the sheet resistance in the structures with a thinner channel layer, with a drop in mobility being not only due to ionized impurity scattering, but also due to a combined effect of weakening of screening, lower carrier energy and change in form-factors on scattering by interface roughness, dislocations and polar optical phonons.

3.
Nanotechnology ; 28(27): 275201, 2017 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-28612754

RESUMEN

We present a study of blue III-nitride light-emitting diodes (LEDs) with multiple quantum well (MQW) and quantum dot (QD) active regions (ARs), comparing experimental and theoretical results. The LED samples were grown by metalorganic vapor phase epitaxy, utilizing growth interruption in the hydrogen/nitrogen atmosphere and variable reactor pressure to control the AR microstructure. Realistic configuration of the QD AR implied in simulations was directly extracted from HRTEM characterization of the grown QD-based structures. Multi-scale 2D simulations of the carrier transport inside the multiple QD AR have revealed a non-trivial pathway for carrier injection into the dots. Electrons and holes are found to penetrate deep into the multi-layer AR through the gaps between individual QDs and get into the dots via their side edges rather than via top and bottom interfaces. This enables a more homogeneous carrier distribution among the dots situated in different layers than among the laterally uniform quantum well (QWs) in the MQW AR. As a result, a lower turn-on voltage is predicted for QD-based LEDs, as compared to MQW ones. Simulations did not show any remarkable difference in the efficiencies of the MQW and QD-based LEDs, if the same recombination coefficients are utilized, i.e. a similar crystal quality of both types of LED structures is assumed. Measurements of the current-voltage characteristics of LEDs with both kinds of the AR have shown their close similarity, in contrast to theoretical predictions. This implies the conventional assumption of laterally uniform QWs not to be likely an adequate approximation for the carrier transport in MQW LED structures. Optical characterization of MQW and QD-based LEDs has demonstrated that the later ones exhibit a higher efficiency, which could be attributed to better crystal quality of the grown QD-based structures. The difference in the crystal quality explains the recently observed correlation between the growth pressure of LED structures and their efficiency and should be taken into account while further comparing performances of MQW and QD-based LEDs. In contrast to experimental results, our simulations did not reveal any advantages of using QD-based ARs over the MQW ones, if the same recombination constants are assumed for both cases. This fact demonstrates importance of accounting for growth-dependent factors, like crystal quality, which may limit the device performance. Nevertheless, a more uniform carrier injection into multi-layer QD ARs predicted by modeling may serve as the basis for further improvement of LED efficiency by lowering carrier density in individual QDs and, hence, suppressing the Auger recombination losses.

4.
Nanotechnology ; 28(1): 015701, 2017 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-27897139

RESUMEN

The impact of electromechanical coupling on optical properties of light-emitting diodes (LEDs) with InGaN/GaN quantum-dot (QD) active regions is studied by numerical simulations. The structure, i.e. the shape and the average In content of the QDs, has been directly derived from experimental data on out-of-plane strain distribution obtained from the geometric-phase analysis of a high-resolution transmission electron microscopy image of an LED structure grown by metalorganic vapor-phase epitaxy. Using continuum [Formula: see text] calculations, we have studied first the lateral and full electromechanical coupling between the QDs in the active region and its impact on the emission spectrum of a single QD located in the center of the region. Our simulations demonstrate the spectrum to be weakly affected by the coupling despite the strong common strain field induced in the QD active region. Then we analyzed the effect of vertical coupling between vertically stacked QDs as a function of the interdot distance. We have found that QCSE gives rise to a blue-shift of the overall emission spectrum when the interdot distance becomes small enough. Finally, we compared the theoretical spectrum obtained from simulation of the entire active region with an experimental electroluminescence (EL) spectrum. While the theoretical peak emission wavelength of the selected central QD corresponded well to that of the EL spectrum, the width of the latter one was determined by the scatter in the structures of various QDs located in the active region. Good agreement between the simulations and experiment achieved as a whole validates our model based on realistic structure of the QD active region and demonstrates advantages of the applied approach.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA