Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202416884, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39275956

RESUMEN

Post-modification of porous materials with molecular modulators has emerged as a well-established strategy for improving gas adsorption and separation. However, a notable challenge lies in maintaining porosity and the limited applicability of the current method. In this study, we employed the mechanochemical "Cage-on-MOF" strategy, utilizing porous coordination cages (PCCs) with intrinsic pores and apertures as surface modulators to improve the gas adsorption and separation properties of the parent MOFs. We demonstrated the fast and facile preparation of 28 distinct MOF@PCC composites by combining 7 MOFs with 4 PCCs with varying aperture sizes and exposed functional groups through a mechanochemical reaction in 5 mins. Only the combinations of PCCs and MOFs with closely matched aperture sizes exhibited enhanced gas adsorption and separation performance. Specifically, MOF-808@PCC-4 exhibited a significantly increased C2H2 uptake (+64%) and a longer CO2/C2H2 separation retention time (+40%). MIL-101@PCC-4 achieved a substantial C2H2 adsorption capacity of 6.11 mmol/g. This work not only highlights the broad applicability of the mechanochemical "Cage-on-MOF" strategy for the functionalization of a wide range of MOFs but also establishes potential design principles for the development of hybrid porous materials with enhanced gas adsorption and separation capabilities, along with promising applications in catalysis and intracellular delivery.

2.
ACS Cent Sci ; 9(4): 805-815, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37122452

RESUMEN

Porous materials have been widely applied for supercapacitors; however, the relationship between the electrochemical behaviors and the spatial structures has rarely been discussed before. Herein, we report a series of porous coordination cage (PCC) flexible supercapacitors with tunable three-dimensional (3D) cavities and redox centers. PCCs exhibit excellent capacitor performances with a superior molecular capacitance of 2510 F mmol-1, high areal capacitances of 250 mF cm-2, and unique cycle stability. The electrochemical behavior of PCCs is dictated by the size, type, and open-close state of the cavities. Both the charge binding site and the charge transportation pathway are unambiguously elucidated for PCC supercapacitors. These findings provide central theoretical support for the "structure-property relationship" for designing powerful electrode materials for flexible energy storage devices.

3.
Angew Chem Int Ed Engl ; 62(31): e202303896, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37148158

RESUMEN

Mimicking the active site and the substrate binding cavity of the enzyme to achieve specificity in catalytic reactions is an essential challenge. Herein, porous coordination cages (PCCs) with intrinsic cavities and tunable metal centers have proved the regulation of reactive oxygen species (ROS) generating pathways as evidenced by multiple photo-induced oxidations. Remarkably, in the presence of the Zn4 -µ4 -O center, PCC converted dioxygen molecules from triplet to singlet excitons, whereas the Ni4 -µ4 -O center promoted the efficient dissociation of electrons and holes to conduct electron transfer towards substrates. Accordingly, the distinct ROS generation behavior of PCC-6-Zn and PCC-6-Ni enables the conversion of O2 to 1 O2 and O2 ⋅- , respectively. In contrast, the Co4 -µ4 -O center combined the 1 O2 and O2 ⋅- together to generate carbonyl radicals, which in turn reacted with the oxygen molecules. Harnessing the three oxygen activation pathways, PCC-6-M (M=Zn/Ni/Co) display specific catalytic activities in thioanisole oxidation (PCC-6-Zn), benzylamine coupling (PCC-6-Ni), and aldehyde autoxidation (PCC-6-Co). This work not only provides fundamental insights into the regulation of ROS generation by a supramolecular catalyst but also demonstrates a rare example of achieving reaction specificity through mimicking natural enzymes by PCCs.


Asunto(s)
Metales , Oxígeno , Especies Reactivas de Oxígeno , Metales/química , Oxidación-Reducción , Oxígeno/química
4.
Polymers (Basel) ; 11(1)2018 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-30960024

RESUMEN

In this study, three-dimensional glucose/graphene-based aerogels (G/GAs) were synthesized using the hydrothermal reduction and CO2 activation method. Graphene oxide (GO) was used as a matrix, and glucose was used as a binder for the orientation of the GO morphology in an aqueous media. We determined that G/GAs exhibited narrow mesopore size distribution, a high surface area (763 m² g-1), and hierarchical macroporous and mesoporous structures. These features contributed to G/GAs being promising adsorbents for the removal of CO2 (76.5 mg g-1 at 298 K), CH4 (16.8 mg g-1 at 298 K), and H2 (12.1 mg g-1 at 77 K). G/GAs presented excellent electrochemical performance, featuring a high specific capacitance of 305.5 F g-1 at 1 A g-1, and good cyclic stability of 98.5% retention after 10,000 consecutive charge-discharge cycles at 10 A g-1. This study provided an efficient approach for preparing graphene aerogels exhibiting hierarchical porosity for gas adsorption and supercapacitors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA