Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 268
Filtrar
1.
Environ Pollut ; 362: 124945, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39265771

RESUMEN

Cadmium (Cd) exhibits widely olfactory toxicity to animals. We previously reported that Cd exposure induces the transcriptional dysregulation of olfactory marker proteins (OMPs) of the red imported fire ant Solenopsis invicta. However, it is still unclear how environmental Cd exposure-induced deregulation of OMPs affects the olfactory signal transduction and olfaction-driven social behavior of S. invicta. Here, we showed that S. invicta displayed dull sensory perception on bait in Cd-contaminated areas and dietary Cd ingestion by S. invicta reduced the bait search efficiency. We hypothesize that deregulation of OMPs by Cd exposure blocks the olfactory signal transduction in fire ants. Our results indicated the odor binding protein 14 (SiOBP14) was consistently inhibited in antennal sensilla of fire ants across Cd exposure at 0.5, 5 and 50 mg/kg. Function analysis in vitro and in vivo demonstrated that SiOBP14 is essential in perception of S. invicta to bait odorants. Cd-exposed fire ants showed weak odorant receptor neurons (ORNs) chemosensory signaling and electroantennogram (EAG) response. Moreover, Cd exposure repeals the preference of S. invicta to the active bait odorants, including 2-methyltetrahydrofuran-3-one, 2-methyl-3-furanthiol and 4,5-dimethylthiazole, and even triggers a behavioral transition from preference to repellence. These results indicate that Cd exposure inhibits the specific OMP expression and disrupts olfactory signal transduction, thereby inducing dull sensory perception of S. invicta to bait odorants. The findings provide new implications for monitoring and control of agricultural insect pests in heavy metal polluted areas.

2.
J Appl Microbiol ; 135(9)2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39264044

RESUMEN

AIMS: Heterologous expression of sulfur: quinone oxidoreductase (Sqr) from Halomonas mongoliensis JS01, which is responsible for oxidizing sulfide to elemental sulfur, in Thioalkalivibrio versutus (T. versutus) D301 improves desulfurization. METHODS AND RESULTS: We expressed sqr in T. versutus D301 by conjugative transfer and then assayed its desulfurization capacity in an airlift reactor and analyzed its transcriptome at -380 mV ORP. Our findings demonstrate that the D301-sqr+ strain, utilizing sodium sulfide as a sulfur source under optimal ORP conditions (-380 mV), achieved an elemental sulfur yield of 95%. This represents an 8% increase over the T. versutus D301. Moreover, the sodium sulfide utilization rate for D301-sqr+ showed a marked improvement [0.741 vs. 0.651 mmol∙(l·h)-1], with a concurrent increase in the rate of elemental sulfur production when compared to the T. versutus D301 (0.716 vs. 0.518 mmol ∙(l·h)-1). Transcriptome analysis revealed that the flavocytochrome c (fcc) and the sox system were differentially transcriptionally down-regulated in D301-sqr+ compared with the T. versutus D301. CONCLUSIONS: Heterologous expression of the gene sqr altered the transcription of related genes in T. versutus D301 sulfur oxidation pathway, increasing the yield of elemental sulfur and the rate of sulfur oxidation, and making D301-sqr+ more potential for industrial applications.


Asunto(s)
Azufre , Azufre/metabolismo , Halomonas/genética , Halomonas/metabolismo , Halomonas/enzimología , Sulfuros/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Oxidación-Reducción , Quinona Reductasas/metabolismo , Quinona Reductasas/genética , Reactores Biológicos
3.
Arch Microbiol ; 206(10): 392, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39230673

RESUMEN

Numerous works have reported that magnetic fields serve as signals capable of influencing microbial metabolism. However, little is known about the effect of magnetic field on erythritol production by the model microorganism Yarrowia lipolytica (Y. lipolytica). Therefore, we investigated the effect of low-frequency alternating magnetic fields (LF-AMF) with different magnetic field intensities (0-1.5 mT) and different magnetic field treatment times (1-10 days) on the production of erythritol by Y. lipolytica -JZ204. The optimal treatment condition was 0.5 mT for 8 days. As a result, a maximal erythritol yield was achieved 63.74 g/L, the biomass was reached 37 g/L, and the specific erythritol yield per unit of biomass was 1.7227 g/g, which were 60.72%, 32.09%, and 24.85% higher than the control, respectively. We investigated the internal mechanism of magnetic fields impact by using transcriptomics and RT-qPCR technology. This study demonstrated the effectiveness of LF-AMF in enhancing erythritol production by Y. lipolytica JZ-204, providing insights for the application of magnetic field in assisting microbial fermentation and improving the synthesis of beneficial products.


Asunto(s)
Eritritol , Campos Magnéticos , Yarrowia , Yarrowia/metabolismo , Yarrowia/genética , Yarrowia/crecimiento & desarrollo , Eritritol/metabolismo , Eritritol/biosíntesis , Fermentación , Biomasa
4.
Bioresour Technol ; 412: 131352, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39186986

RESUMEN

D-pantothenic acid (D-PA) is an essential vitamin that has been widely used in various industries. However, the low productivity caused by slow D-PA production in fermentation hinders its potential applications. In this study, strategies of engineering the synthetic pathway combined with regulating methyl recycle were employed in E. coli to enhance D-PA production. First, a self-induced promoter-mediated dynamic regulation of D-PA degradation pathway was carried out to improve D-PA accumulation. Then, to drive more carbon flux into D-PA synthesis, the key nodes of the R-pantoate pathway which encoded the essential enzyme were integrated into the genome. Subsequently, the further increase in D-PA production was achieved by promoting the regeneration of methyl donor. The strain L11T produced 86.03 g/L D-PA with a productivity of 0.797 g/L/h, which presented the highest D-PA titer and productivity to date. The strategies could be applied to constructing cell factories for producing other bio-based products.


Asunto(s)
Escherichia coli , Ingeniería Metabólica , Ácido Pantoténico , Escherichia coli/metabolismo , Escherichia coli/genética , Ingeniería Metabólica/métodos , Ácido Pantoténico/metabolismo , Fermentación , Regiones Promotoras Genéticas
5.
J Cell Mol Med ; 28(16): e70022, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39205384

RESUMEN

Under the long-term pressure overload stimulation, the heart experiences embryonic gene activation, leading to myocardial hypertrophy and ventricular remodelling, which can ultimately result in the development of heart failure. Identifying effective therapeutic targets is crucial for the prevention and treatment of myocardial hypertrophy. Histone lysine lactylation (HKla) is a novel post-translational modification that connects cellular metabolism with epigenetic regulation. However, the specific role of HKla in pathological cardiac hypertrophy remains unclear. Our study aims to investigate whether HKla modification plays a pathogenic role in the development of cardiac hypertrophy. The results demonstrate significant expression of HKla in cardiomyocytes derived from an animal model of cardiac hypertrophy induced by transverse aortic constriction surgery, and in neonatal mouse cardiomyocytes stimulated by Ang II. Furthermore, research indicates that HKla is influenced by glucose metabolism and lactate generation, exhibiting significant phenotypic variability in response to various environmental stimuli. In vitro experiments reveal that exogenous lactate and glucose can upregulate the expression of HKla and promote cardiac hypertrophy. Conversely, inhibition of lactate production using glycolysis inhibitor (2-DG), LDH inhibitor (oxamate) and LDHA inhibitor (GNE-140) reduces HKla levels and inhibits the development of cardiac hypertrophy. Collectively, these findings establish a pivotal role for H3K18la in pathological cardiac hypertrophy, offering a novel target for the treatment of this condition.


Asunto(s)
Cardiomegalia , Histonas , Ácido Láctico , Miocitos Cardíacos , Animales , Cardiomegalia/metabolismo , Cardiomegalia/patología , Histonas/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Miocitos Cardíacos/efectos de los fármacos , Ratones , Ácido Láctico/metabolismo , Procesamiento Proteico-Postraduccional , Modelos Animales de Enfermedad , Glucosa/metabolismo , Masculino , Lisina/metabolismo , Ratones Endogámicos C57BL , Glucólisis
6.
Theranostics ; 14(11): 4198-4217, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39113809

RESUMEN

The utilization of extracellular vesicles (EVs) in wound healing has been well-documented. However, the direct administration of free EVs via subcutaneous injection at wound sites may result in the rapid dissipation of bioactive components and diminished therapeutic efficacy. Functionalized hydrogels provide effective protection, as well as ensure the sustained release and bioactivity of EVs during the wound healing process, making them an ideal candidate material for delivering EVs. In this review, we introduce the mechanisms by which EVs accelerate wound healing, and then elaborate on the construction strategies for engineered EVs. Subsequently, we discuss the synthesis strategies and application of hydrogels as delivery systems for the sustained release of EVs to enhance complicated wound healing. Furthermore, in the face of complicated wounds, functionalized hydrogels with specific wound microenvironment regulation capabilities, such as antimicrobial, anti-inflammatory, and immune regulation, used for loading engineered EVs, provide potential approaches to addressing these healing challenges. Ultimately, we deliberate on potential future trajectories and outlooks, offering a fresh viewpoint on the advancement of artificial intelligence (AI)-energized materials and 3D bio-printed multifunctional hydrogel-based engineered EVs delivery dressings for biomedical applications.


Asunto(s)
Vesículas Extracelulares , Hidrogeles , Cicatrización de Heridas , Vesículas Extracelulares/metabolismo , Hidrogeles/química , Humanos , Animales , Sistemas de Liberación de Medicamentos/métodos
7.
Chem Sci ; 15(32): 12983-12988, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39148795

RESUMEN

Even though catalytic asymmetric bifunctionalization of allenes has been extensively studied, almost all of the reported examples have been achieved in a two-component manner. In this study, we report a highly efficient asymmetric bifunctionalization of allenes with iodohydrocarbons and NH2-unprotected amino acid esters. The adopted chiral aldehyde/palladium combined catalytic system precisely governs the chemoselectivity, regioselectivity, and stereoselectivity of this three-component reaction. A wide range of substituted aryl iodides, allenes and amino acid esters can well participate in this reaction and deliver structurally diverse α,α-disubstituted α-amino acid esters with excellent experimental outcomes. One of the resulting products is utilized for the total synthesis of the molecule (S,R)-VPC01091.

8.
PLoS One ; 19(8): e0308178, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39093899

RESUMEN

OBJECTIVE: To construct a stable rat portal vein thrombosis (PVT) model and explore the time window of urokinase thrombolytic therapy on this basis. METHODS: Constructing a rat PVT model by combining anhydrous ethanol disruption of portal endothelium with stasis of blood flow. Forty-eight rats after PVT modeling were divided into control group and experimental group, with 24 rats in each group. The experimental and control groups were given urokinase treatment and saline tail vein injection, respectively. The two groups of rats were observed and compared for PVT formation at 1, 3 and 5 days after modeling, respectively. RESULTS: A stable rat PVT model was successfully constructed. No significant differences were found in PVT length, portal vein wet weight, and percentage of luminal occlusion area in the control rats at 1, 3, and 5 days after successful modeling (P > 0.05). Compared with control rats 1 day after modeling, the percentage of non-organized thrombus luminal area was significantly decreased (P < 0.0001), and the percentage of organized thrombus luminal area was significantly increased (P < 0.0001) in the PVTs of control rats at 3 and 5 days after modeling. After thrombolytic treatment with urokinase, plasma fibrinogen (FBG) levels were significantly decreased in the experimental group of rats compared with the control group (P < 0.0001), and plasma D-dimer (D2D) levels were significantly increased in the experimental group of rats compared with the control group (P < 0.0001). In addition, we observed prolongation of prothrombin time (PT) in the experimental group at 1, 3 and 5 days after modeling compared to the control group (P = 0.0001). Compared with the control group, portal vein wet weight and PVT length were significantly decreased in the experimental group of rats at 1 day after modeling (P < 0.05), whereas these differences were not found in the two groups of rats at 3 and 5 days after modeling (P > 0.05). The percentage of non-organized thrombus area in the experimental group was significantly decreased compared with that in the control group at 1, 3, and 5 days after modeling (P < 0.05), whereas there was no significant difference in the percentage of lumen area of organized thrombus between the two groups (P > 0.05). CONCLUSION: The method of producing a rat PVT model by destroying the endothelium of the portal vein by anhydrous ethanol combined with blood flow stasis is feasible and reproducible. In addition, the optimal time window for thrombolysis in the treatment of PVT in rats using urokinase is the early stage of thrombosis, when the fibrin content is highest.


Asunto(s)
Modelos Animales de Enfermedad , Vena Porta , Terapia Trombolítica , Activador de Plasminógeno de Tipo Uroquinasa , Trombosis de la Vena , Animales , Vena Porta/efectos de los fármacos , Trombosis de la Vena/tratamiento farmacológico , Ratas , Activador de Plasminógeno de Tipo Uroquinasa/metabolismo , Terapia Trombolítica/métodos , Masculino , Ratas Sprague-Dawley , Fibrinolíticos/farmacología , Fibrinolíticos/uso terapéutico , Fibrinógeno/metabolismo , Productos de Degradación de Fibrina-Fibrinógeno/metabolismo
9.
Cell Signal ; 121: 111294, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38996954

RESUMEN

BACKGROUND: Osteoporosis (OP) is a prevalent disease associated with age, and one of the primary pathologies is the defect of osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). This study aimed to elucidate whether Nuclear Receptor Binding SET Domain Protein 2 (NSD2) transcriptionally regulates osteogenic differentiation of BMSCs in osteoporosis. METHODS: Identification of human BMSCs (hBMSCs) in vitro was measured by flow cytometry. Osteogenesis of hBMSCs in vitro was measured by Alizarin Red and Alkaline Phosphatase staining. The protein levels of H3K36me1/2/3, NSD2, and Hoxa2 were measured by western blotting. The mRNA levels of NSD2, Runx2, and BSP were measured by qPCR. The role of NSD2 in the osteogenic differentiation of BMSCs was further identified by silencing NSD2 via shRNA or overexpression of NSD2 via lentivirus transfection. The interactions of NSD2, H3K36me2 and Hoxa2 were identified via chromatin immunoprecipitation (ChIP). Luciferase reporting analysis was employed to confirm that NSD2 regulated the transcriptional activity of Hoxa2. Ovariectomized (OVX) was performed on mice to construct osteoporosis (OP) model. Subsequently, the bone mass was assessed by micro computed tomography (micro-CT) scan. RESULTS: During the osteogenesis of OP-derived hBMSCs, the levels of NSD2 and H3K36me2 significantly increased in 14 days of osteogenic induction. Inhibition of NSD2 via shRNA increased the RUNX2 and BSP expression of hBMSCs, while overexpression of NSD2 decreased RUNX2 and BSP expression of hBMSCs. ChIP analysis indicated NSD2-mediated H3K36me2 reduced the osteogenic differentiation of hBMSCs by regulating the osteogenic inhibitor Hoxa2. Accordingly, inhibition of NSD2 in vivo via tail vein injection of LV-shNSD2 lentivirus greatly alleviated OVX-induced osteoporosis in mice. CONCLUSION: We demonstrated that NSD2 inhibited the osteogenic differentiation in hBMSCs by transcriptionally downregulating Hoxa2 via H3K36me2 dimethylation. Inhibition of NSD2 effectively attenuated bone loss in murine osteoporosis and NSD2 is a promising target for clinical treatment of osteoporosis.


Asunto(s)
Diferenciación Celular , N-Metiltransferasa de Histona-Lisina , Proteínas de Homeodominio , Células Madre Mesenquimatosas , Osteogénesis , Osteoporosis , Células Madre Mesenquimatosas/metabolismo , Osteoporosis/metabolismo , Osteoporosis/patología , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Humanos , Animales , N-Metiltransferasa de Histona-Lisina/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , Ratones , Femenino , Histonas/metabolismo , Proteínas Represoras/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Ratones Endogámicos C57BL , Células Cultivadas
10.
Talanta ; 278: 126534, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39002259

RESUMEN

Exosomes are of great significance in clinical diagnosis, due to their high homology with parental generation, which can reflect the pathophysiological status. However, the quantitative and classification detection of exosomes is still faced with the challenges of low sensitivity and complex operation. In this study, we develop an electrical and label-free method to directly detect exosomes with high sensitivity based on a Silicon nanowire field effect transistor biosensor (Si-NW Bio-FET). First, the impact of Debye length on Si-NW Bio-FET detection was investigated through simulation. The simulation results demonstrated that as the Debye length increased, the electrical response to Si-NW produced by charged particle at a certain distance from the surface of Si-NW was greater. A Si-NW Bio-FET modified with specific antibody CD81 on the nanowire was fabricated then used for detection of cell line-derived exosomes, which achieved a low limit of detection (LOD) of 1078 particles/mL in 0.01 × PBS. Furthermore, the Si-NW Bio-FETs modified with specific antibody CD9, CD81 and CD63 respectively, were employed to distinguish exosomes derived from human promyelocytic leukemia (HL-60) cell line in three different states (control group, lipopolysaccharide (LPS) inflammation group, and LPS + Romidepsin (FK228) drug treatment group), which was consistent with nano-flow cytometry. This study provides a highly sensitive method of directly quantifying exosomes without labeling, indicating its potential as a tool for disease surveillance and medication instruction.


Asunto(s)
Técnicas Biosensibles , Exosomas , Nanocables , Silicio , Transistores Electrónicos , Silicio/química , Nanocables/química , Humanos , Técnicas Biosensibles/métodos , Técnicas Biosensibles/instrumentación , Exosomas/química , Células HL-60 , Proteínas de la Membrana/análisis , Límite de Detección
11.
Inorg Chem ; 63(27): 12681-12689, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38922608

RESUMEN

The oxygen reduction reaction (ORR) plays a vital role in many next-generation electrochemical energy conversion and storage devices, motivating the search for low-cost ORR electrocatalysts possessing high activity and excellent durability. In this work, we demonstrate that iron-cobalt phosphide (FeCoP) nanoparticles encapsulated in a N-doped carbon framework (FeCoP@NC) represent a very promising catalyst for the ORR in alkaline media. The core-shell structured FeCoP@NC catalyst offered outstanding ORR activity with a half-wave potential (E1/2) of 0.86 V vs reversible hydrogen electrode (RHE) and excellent stability in a 0.1 M KOH electrolyte, outperforming commercial Pt/C and many recently reported noble-metal-free ORR electrocatalysts. The superiority of FeCoP@NC as an ORR electrocatalyst relative to Pt/C was further verified in prototype zinc-air batteries (ZABs), with the aqueous and flexible ZABs prepared using FeCoP@NC offering excellent stability, impressive open circuit voltages (1.56 and 1.44 V, respectively), and high maximum power densities (183.5 and 69.7 mW cm-2, respectively). Density functional theory calculations revealed that encapsulating FeCoP nanoparticles in N-doped carbon shells resulted in favorable electron penetration effects, which synergistically regulated the adsorption/desorption of ORR intermediates for optimal ORR performance while also boosting the electronic conductivity. Our findings offer valuable new insights for rational design of transition metal phosphide-based catalysts for the ORR and other electrochemical applications.

12.
Nat Commun ; 15(1): 4813, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844461

RESUMEN

Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) poses a major threat to the global swine industry, yet effective prevention and control measures remain elusive. This study unveils Nitazoxanide (NTZ) as a potent inhibitor of PRRSV both in vitro and in vivo. Through High-Throughput Screening techniques, 16 potential anti-PRRSV compounds are identified from a library comprising FDA-approved and pharmacopeial drugs. We show that NTZ displays strong efficacy in reducing PRRSV proliferation and transmission in a swine model, alleviating viremia and lung damage. Additionally, Tizoxanide (TIZ), the primary metabolite of NTZ, has been identified as a facilitator of NMRAL1 dimerization. This finding potentially sheds light on the underlying mechanism contributing to TIZ's role in augmenting the sensitivity of the IFN-ß pathway. These results indicate the promising potential of NTZ as a repurposed therapeutic agent for Porcine Reproductive and Respiratory Syndrome (PRRS). Additionally, they provide valuable insights into the antiviral mechanisms underlying NTZ's effectiveness.


Asunto(s)
Antivirales , Ensayos Analíticos de Alto Rendimiento , Nitrocompuestos , Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Tiazoles , Animales , Virus del Síndrome Respiratorio y Reproductivo Porcino/efectos de los fármacos , Nitrocompuestos/farmacología , Porcinos , Antivirales/farmacología , Ensayos Analíticos de Alto Rendimiento/métodos , Síndrome Respiratorio y de la Reproducción Porcina/tratamiento farmacológico , Síndrome Respiratorio y de la Reproducción Porcina/virología , Tiazoles/farmacología , Replicación Viral/efectos de los fármacos , Línea Celular , Viremia/tratamiento farmacológico , Viremia/virología
13.
Angew Chem Int Ed Engl ; : e202406126, 2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38923075

RESUMEN

Aqueous zinc batteries based on the conversion-type sulfur cathodes are promising in energy storage system due to the high theoretical energy density, low cost, and good safety. However, the multi-electron solid-state intermediate conversion reaction of sulfur cathodes generally possess sluggish kinetics, which leads to lower discharge voltage and inefficient sulfur utilization, thus suppressing the practical energy density. Herein, sulfur nanoparticles derived from metal-organic frameworks confined in situ within electrospun fibers derived sulfur and nitrogen co-doped carbon nanofibers (S@S,N-CNF) composite, which possesses yolk-shell S@C nanostructure, is fabricated through successive sulfidation, pyrolysis, and sulfide oxidation processes, and served as a high-performance cathode material for Zn-S battery. The S and N dopants on carbon can collectively catalyse sulfur reduction reaction (SRR) by lowering energy barrier and accelerating kinetics to increase discharge voltage and specific capacity. Meanwhile, the yolk-shell S@C structure with spatially confined S nanoparticle yolks is beneficial to improve charge transfer and lower activation energy, thus further expediting SRR kinetics. Furthermore, extensive density functional theory (DFT) calculations reveal that S and N dual-doping can thermodynamically and dynamically reduce the energy barrier of rate-determining step (i.e., the transformation of *ZnS4 into *ZnS2) for the overall SRR, thereby significantly accelerating SRR kinetics.

14.
Artículo en Inglés | MEDLINE | ID: mdl-38920069

RESUMEN

BACKGROUND: Immune Checkpoint Inhibitors (ICIs) are becoming a new treatment approach for patients with unresectable hepatocellular carcinoma (uHCC). However, the results regarding its efficacy compared with the standard regimen of targeted therapy are not consistent. AIMS: Our aim was to conduct a meta-analysis of existing studies to reveal the differences in the efficacy and safety of the two systems of treatment. METHODS: The related studies were searched in PubMed, Web of Science, the Cochrane Library, and Embase from inception to June 30th, 2022. Data on overall survival (OS), progression-free survival (PFS), objective response rate (ORR), disease control rate (DCR), and rate of treatment- related adverse events (TrAEs) with their 95% confidence intervals (CI) were pooled and analyzed by Stata 12.0 software. RESULTS: A total of ten high-quality controlled clinical studies with 5,539 patients with uHCC were included. The hazard ratio (HR) of the OS and PFS were 0.80 (95% CI, 0.74-0.86) and 0.72 (95% CI, 0.58-0.89), respectively. In addition, the odds ratio (OR) of the ORR and DCR were 3.39 (95% CI, 2.75-4.17) and 1.20 (95% CI, 0.84-1.73), respectively. The ORR of ICIs monotherapy, ICIs plus anti-vascular endothelial growth factor (VEGF) and ICIs plus ICIs were 16% (95% CI, 0.13-0.18), 17% (95% CI, 0.10-0.27), and 20% (95% CI, 0.16-0.24), respectively. For all included studies, the OR of the overall TrAEs was 0.51(95% CI, 0.22-1.18), and grade ≥ 3 TrAEs was 0.78 (95% CI, 0.53-1.14). CONCLUSION: ICIs were more effective than targeted drugs concerning survival periods and ORR in patients with uHCC while maintaining a stable safety profile.

15.
Small ; : e2403894, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38864207

RESUMEN

Theory-guided materials design is an effective strategy for designing catalysts with high intrinsic activity whilst minimizing the usage of expensive metals like platinum. As proof-of-concept, herein it demonstrates that using density functional theory (DFT) calculations and experimental validation that intermetallic PtCo3 alloy nanoparticles offer enhanced electrocatatalytic performance for the oxygen reduction reaction (ORR) compared to Pt nanoparticles. DFT calculations established that PtCo3(111) surfaces possess better intrinsic ORR activity compared to Pt(111) surfaces, owing to the synergistic action of adjacent Pt and Co active sites which optimizes the binding strength of ORR intermediates to boost overall ORR kinetics. With this understanding, a PtCo3/NC catalyst, comprising PtCo3 nanoparticles exposing predominantly (111) facets dispersed on an N-doped carbon support, is successfully fabricated. PtCo3/NC demonstrates a high specific activity (3.4 mA cm-2 mgPt -1), mass activity (0.67 A mgPt -1), and cycling stability for the ORR in 0.1 M KOH, significantly outperforming a commercial 20 wt.% Pt/C catalyst. Moreover, a zinc-air battery (ZAB) assembled with PtCo3/NC as the air-electrode catalyst delivered an open-circuit voltage of 1.47 V, a specific capacity of 775.1 mAh gZn -1 and excellent operation durability after 200 discharge/charge cycles, vastly superior performance to a ZAB built using commercial Pt/C+IrO2 as the air-electrode catalyst.

16.
Anal Sci ; 2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38909351

RESUMEN

Ammonia nitrogen (AN) pollution frequently occurs in urban rivers with the continuous acceleration of industrialization. Monitoring AN pollution levels and tracing its complex sources often require large-scale testing, which are time-consuming and costly. Due to the lack of reliable data samples, there were few studies investigating the feasibility of water quality prediction of AN concentration with a high fluctuation and non-stationary change through data-driven models. In this study, four deep-learning models based on neural network algorithms including artificial neural network (ANN), recurrent neural network (RNN), long short-term memory (LSTM), and gated recurrent unit (GRU) were employed to predict AN concentration through some easily monitored indicators such as pH, dissolved oxygen, and conductivity, in a real AN-polluted river. The results showed that the GRU model achieved optimal prediction performance with a mean absolute error (MAE) of 0.349 and coefficient of determination (R2) of 0.792. Furthermore, it was found that data preprocessing by the VMD technique improved the prediction accuracy of the GRU model, resulting in an R2 value of 0.822. The prediction model effectively detected and warned against abnormal AN pollution (> 2 mg/L), with a Recall rate of 93.6% and Precision rate of 72.4%. This data-driven method enables reliable monitoring of AN concentration with high-frequency fluctuations and has potential applications for urban river pollution management.

17.
Small ; : e2400845, 2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38881161

RESUMEN

Na2Ti3O7-based anodes show great promise for Na+ storage in sodium-ion batteries (SIBs), though the effect of Na2Ti3O7 morphology on battery performance remains poorly understood. Herein, hydrothermal syntheses is used to prepare free-standing Na2Ti3O7 nanosheets or Na2Ti3O7 nanotubes on Ti foil substrates, with the structural and electrochemical properties of the resulting electrodes explored in detail. Results show that the Na2Ti3O7 nanosheet electrode (NTO NSs) delivered superior performance in terms of reversible capacity, rate capability, and especially long-term durability in SIBs compared to its nanotube counterpart (NTO NTs). Electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM) investigations, combined with density functional theory calculations, demonstrated that the flexible 2D Na2Ti3O7 nanosheets are mechanically more robust than the rigid Na2Ti3O7 nanotube arrays during prolonged battery cycling, explaining the superior durability of the NTO NSs electrode. This work prompts the use of anodes based on Na2Ti3O7 nanosheets in the future development of high-performance SIBs.

18.
Quant Imaging Med Surg ; 14(5): 3557-3571, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38720841

RESUMEN

Background: The presence of noise in medical ultrasound images significantly degrades image quality and affects the accuracy of disease diagnosis. The convolutional neural network-denoising autoencoder (CNN-DAE) model extracts feature information by stacking regularly sized kernels. This results in the loss of texture detail, the over-smoothing of the image, and a lack of generalizability for speckle noise. Methods: A lightweight attention denoise-convolutional neural network (LAD-CNN) is proposed in the present study. Two different lightweight attention blocks (i.e., the lightweight channel attention (LCA) block and the lightweight large-kernel attention (LLA) block are concatenated into the downsampling stage and the upsampling stage, respectively. A skip connection is included before the upsampling layer to alleviate the problem of gradient vanishing during backpropagation. The effectiveness of our model was evaluated using both subjective visual effects and objective evaluation metrics. Results: With the highest peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) values at all noise levels, the proposed model outperformed the other models. In the test of brachial plexus ultrasound images, the average PSNR of our model was 0.15 higher at low noise levels and 0.33 higher at high noise levels than the suboptimal model. In the test of fetal ultrasound images, the average PSNR of our model was 0.23 higher at low noise levels and 0.20 higher at high noise levels than the suboptimal model. The statistical analysis showed that the p values were less than 0.05, which indicated a statistically significant difference between our model and the other models. Conclusions: The results of this study suggest that the proposed LAD-CNN model is more efficient in denoising and preserving image details than both conventional denoising algorithms and existing deep-learning algorithms.

19.
Arch Microbiol ; 206(6): 273, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38772954

RESUMEN

Acid protease is widely used in industries such as food processing and feed additives. In the study, low frequency magnetic field (LF-MF) as an aid enhances acid protease production by Aspergillus niger (A. niger). The study assessed mycelial biomass, the enzymic activity of the acidic protease and underlying mechanism. At low intensities, alternating magnetic field (AMF) is more effective than static magnetic fields (SMF). Under optimal magnetic field conditions, acid protease activity and biomass increased by 91.44% and 16.31%, as compared with the control, respectively. Maximum 19.87% increase in enzyme activity after magnetic field treatment of crude enzyme solution in control group. Transcriptomics analyses showed that low frequency alternating magnetic field (LF-AMF) treatment significantly upregulated genes related to hydrolases and cell growth. Our results showed that low-frequency magnetic fields can enhance the acid protease production ability of A. niger, and the effect of AMF is better at low intensities. The results revealed that the effect of magnetic field on the metabolic mechanism of A. niger and provided a reference for magnetic field-assisted fermentation of A. niger.


Asunto(s)
Aspergillus niger , Campos Magnéticos , Péptido Hidrolasas , Aspergillus niger/enzimología , Aspergillus niger/genética , Péptido Hidrolasas/metabolismo , Péptido Hidrolasas/genética , Fermentación , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Biomasa , Micelio/enzimología , Micelio/crecimiento & desarrollo , Micelio/genética
20.
J Clin Neurosci ; 124: 81-86, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38669906

RESUMEN

BACKGROUND: Delayed-onset seizures after deep brain stimulation (DBS) surgery were seldom reported. This study summarized the clinical characteristics of delayed-onset seizures after subthalamic nucleus (STN) DBS surgery for Parkinson's disease (PD) and analyzed risk factors. METHODS: A single-center retrospective study containing consecutive STN-DBS PD patients from 2006 to 2021 was performed. Seizures occurred during the DBS surgery or within one month after DBS surgery were identified based on routine clinical records. Patients with postoperative magnetic resonance imaging (MRI) were included to further analyze the risk factors for postoperative seizures with univariate and multivariate statistical methods. RESULTS: 341 consecutive PD patients treated with bilateral STN-DBS surgery wereidentified, and five patients experienced seizures after DBS surgery with an incidence of 1.47 %. All seizures of the five cases were characterized as delayed onset with average 12 days post-operatively. All seizures presented as generalized tonic-clonic seizures and didn't recur after the first onset. In those seizures cases, peri-electrode edema was found in both hemispheres without hemorrhage and infarction. The average diameter of peri-electrode edema of patients with seizures was larger than those without seizures (3.15 ± 1.00 cm vs 1.57 ± 1.02 cm, p = 0.005). Multivariate risk factor analysis indicated that seizures were only associated with the diameter of peri-electrode edema (OR 4.144, 95 % CI 1.269-13.530, p = 0.019). CONCLUSIONS: Delayed-onset seizures after STN-DBS surgery in PD patients were uncommon with an incidence of 1.47 % in this study. The seizures were transient and self-limiting, with no developing into chronic epilepsy. Peri-electrode edema was a risk factor for delayed-onset seizures after DBS surgery. Patients with an average peri-electrode edema diameter > 2.70 cm had a higher risk to develop seizures.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Complicaciones Posoperatorias , Convulsiones , Núcleo Subtalámico , Humanos , Estimulación Encefálica Profunda/efectos adversos , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/cirugía , Masculino , Femenino , Persona de Mediana Edad , Núcleo Subtalámico/cirugía , Estudios Retrospectivos , Convulsiones/etiología , Convulsiones/epidemiología , Anciano , Complicaciones Posoperatorias/etiología , Complicaciones Posoperatorias/epidemiología , Factores de Riesgo , Imagen por Resonancia Magnética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA