Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Natl Sci Rev ; 11(1): nwad230, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38130973
2.
Nature ; 612(7939): 246-251, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36385532

RESUMEN

A step towards the next generation of high-capacity, noise-resilient communication and computing technologies is a substantial increase in the dimensionality of information space and the synthesis of superposition states on an N-dimensional (N > 2) Hilbert space featuring exotic group symmetries. Despite the rapid development of photonic devices and systems, on-chip information technologies are mostly limited to two-level systems owing to the lack of sufficient reconfigurability to satisfy the stringent requirement for 2(N - 1) degrees of freedom, intrinsically associated with the increase of synthetic dimensionalities. Even with extensive efforts dedicated to recently emerged vector lasers and microcavities for the expansion of dimensionalities1-10, it still remains a challenge to actively tune the diversified, high-dimensional superposition states of light on demand. Here we demonstrate a hyperdimensional, spin-orbit microlaser for chip-scale flexible generation and manipulation of arbitrary four-level states. Two microcavities coupled through a non-Hermitian synthetic gauge field are designed to emit spin-orbit-coupled states of light with six degrees of freedom. The vectorial state of the emitted laser beam in free space can be mapped on a Bloch hypersphere defining an SU(4) symmetry, demonstrating dynamical generation and reconfiguration of high-dimensional superposition states with high fidelity.


Asunto(s)
Comunicación , Tecnología de la Información , Fotones , Tecnología
3.
Opt Express ; 29(23): 38280-38290, 2021 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-34808883

RESUMEN

Photonic quasicrystals are poised to transform the field of nonlinear light-matter interactions due to their ability to support an unlimited number of combinations of wavevectors in their reciprocal lattices. Such greatly enhanced flexibility enabled by k-space engineering makes photonic quasicrystals a promising platform for novel approaches to multi-wavelength conversion, supercontinuum generation, and development of classical and quantum optical sources. Here, we develop a new design method for nonlinear photonic quasicrystals, consisting of a combination of one nonlinear material and one linear material that can simultaneously fulfill phase-matching conditions for a desired number of nonlinear optical interactions as long as the frequencies of the interacting waves are outside of the bandgaps of the quasicrystal structure. Our approach provides enhanced design flexibility, enabling new pathways to designing compact, integrated nonlinear photonic devices and systems on a chip.

4.
Nat Commun ; 12(1): 5833, 2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34611169

RESUMEN

Chalcogenide photonics offers unique solutions for a broad range of applications from mid-infrared sensing to integrated, ultrafast, ultrahigh-bandwidth signal processing. However, to date its usage has been limited to the infrared part of the electromagnetic spectrum, thus avoiding ultraviolet and visible ranges due to absorption of chalcogenide glasses. Here, we experimentally demonstrate and report near-infrared to ultraviolet frequency conversion in an As2S3-based metasurface, enabled by a phase locking mechanism between the pump and the inhomogeneous portion of the third harmonic signal. Due to the phase locking, the inhomogeneous component co-propagates with the pump pulse and encounters the same effective dispersion as the infrared pump, and thus experiences little or no absorption, consequently opening previously unexploited spectral range for chalcogenide glass science and applications, despite the presence of strong material absorption in this range.

5.
Opt Express ; 29(13): 19362-19372, 2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-34266046

RESUMEN

We demonstrate a new method for a systematic, dynamic, high-speed, spatio-temporal control of femtosecond light filamentation in BK7 as a particular example of nonlinear medium. This method is based on using coherent conjugate asymmetric Bessel-Gaussian beams to control the far-field intensity distribution and in turn control the filamentation location. Such spatio-temporal control allows every femtosecond pulse to have a unique intensity distribution that results in the generation of structured filamentation patterns on demand. The switching speed of this technique is dependent on the rise time of the acousto-optic deflector, which can operate in the MHz range while having the ability to handle high peak power pulses that are needed for nonlinear interactions. The proposed and demonstrated spatio-temporal control of structured filaments can enable generation of large filament arrays, opto-mechanical manipulations of water droplets for fog clearing, as well as engineered radiofrequency plasma antennas.

6.
Science ; 372(6540): 403-408, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33888640

RESUMEN

The nonlinear scaling of complexity with the increased number of components in integrated photonics is a major obstacle impeding large-scale, phase-locked laser arrays. Here, we develop a higher-dimensional supersymmetry formalism for precise mode control and nonlinear power scaling. Our supersymmetric microlaser arrays feature phase-locked coherence and synchronization of all of the evanescently coupled microring lasers-collectively oscillating in the fundamental transverse supermode-which enables high-radiance, small-divergence, and single-frequency laser emission with a two-orders-of-magnitude enhancement in energy density. We also demonstrate the feasibility of structuring high-radiance vortex laser beams, which enhance the laser performance by taking full advantage of spatial degrees of freedom of light. Our approach provides a route for designing large-scale integrated photonic systems in both classical and quantum regimes.

7.
Light Sci Appl ; 9: 179, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33101659

RESUMEN

On-chip integrated laser sources of structured light carrying fractional orbital angular momentum (FOAM) are highly desirable for the forefront development of optical communication and quantum information-processing technologies. While integrated vortex beam generators have been previously demonstrated in different optical settings, ultrafast control and sweep of FOAM light with low-power control, suitable for high-speed optical communication and computing, remains challenging. Here we demonstrate fast control of the FOAM from a vortex semiconductor microlaser based on fast transient mixing of integer laser vorticities induced by a control pulse. A continuous FOAM sweep between charge 0 and charge +2 is demonstrated in a 100 ps time window, with the ultimate speed limit being established by the carrier recombination time in the gain medium. Our results provide a new route to generating vortex microlasers carrying FOAM that are switchable at GHz frequencies by an ultrafast control pulse.

8.
Science ; 368(6492): 760-763, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32409473

RESUMEN

The orbital angular momentum (OAM) intrinsically carried by vortex light beams holds a promise for multidimensional high-capacity data multiplexing, meeting the ever-increasing demands for information. Development of a dynamically tunable OAM light source is a critical step in the realization of OAM modulation and multiplexing. By harnessing the properties of total momentum conservation, spin-orbit interaction, and optical non-Hermitian symmetry breaking, we demonstrate an OAM-tunable vortex microlaser, providing chiral light states of variable topological charges at a single telecommunication wavelength. The scheme of the non-Hermitian-controlled chiral light emission at room temperature can be further scaled up for simultaneous multivortex emissions in a flexible manner. Our work provides a route for the development of the next generation of multidimensional OAM-spin-wavelength division multiplexing technology.

9.
Opt Express ; 27(16): 22429-22438, 2019 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-31510537

RESUMEN

We propose to use a continuous supersymmetric (SUSY) transformation of a dielectric permittivity profile in order to design a photonic mode sorter. The iso-spectrality of the SUSY transformation ensures that modes of the waveguide preserve their propagation constants while being spatially separated. This global matching of the propagation constants, in conjunction with the adiabatic modification of the refractive index landscape along the propagation direction, results in the negligible modal cross-talk and low scattering losses in the sorter. We show that a properly optimized SUSY mode sorter outperforms a standard asymmetric Y-splitter by reducing the cross-talk by at least two orders of magnitude. Moreover, the SUSY sorter is capable of sorting either transverse-electric or transverse-magnetic polarized modes and operates in a broad range of wavelengths. At the telecommunication wavelength, the 300-µm-long SUSY sorter provides the cross-talk of -35 dB and a broad operation bandwidth. The design proposed here paves the way toward efficient signal manipulation in integrated photonic devices.

10.
Opt Lett ; 44(18): 4586-4589, 2019 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-31517937

RESUMEN

This Letter lays the foundation of a new type of distributed feedback (DFB) laser whose optical feedback is due to the evanescent coupling between an active positive-index material (PIM) waveguide and a lossy negative-index metamaterial (NIM) waveguide. Active PIM-NIM coupled-mode equations are presented and solved to characterize the dispersion relation, resonant optical gain, and lasing. The photonic bandgap of this grating-less DFB laser does not depend on a Bragg wavenumber, but depends on the difference between the wavenumbers of the PIM and NIM waveguides; controlling this wavenumber difference allows for single-mode lasing and, ultimately, single-mode broadband lasing.

11.
Nat Nanotechnol ; 14(1): 98, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30559487

RESUMEN

In the version of this Letter originally published, Fig. 5g in the Supplementary Information was missing the scale bar. This has now been corrected.

12.
Nat Nanotechnol ; 14(1): 31-34, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30420760

RESUMEN

Photonic topological insulators offer the possibility to eliminate backscattering losses and improve the efficiency of optical communication systems. Despite considerable efforts, a direct experimental demonstration of theoretically predicted robust, lossless energy transport in topological insulators operating at near-infrared frequencies is still missing. Here, we combine the properties of a planar silicon photonic crystal and the concept of topological protection to design, fabricate and characterize an optical topological insulator that exhibits the valley Hall effect. We show that the transmittances are the same for light propagation along a straight topological interface and one with four sharp turns. This result quantitatively demonstrates the suppression of backscattering due to the non-trivial topology of the structure. The photonic-crystal-based approach offers significant advantages compared with other realizations of photonic topological insulators, such as lower propagation losses, the presence of a band gap for light propagating in the crystal-slab plane, a larger operating bandwidth, a much smaller footprint, compatibility with complementary metal-oxide-semiconductor fabrication technology, and the fact that it allows for operation at telecommunications wavelengths.

13.
Opt Express ; 26(23): 30930-30943, 2018 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-30469983

RESUMEN

Ultra-compact, low-loss, fast, and reconfigurable optical components, enabling manipulation of light by light, could open numerous opportunities for controlling light on the nanoscale. Nanostructured all-dielectric metasurfaces have been shown to enable extensive control of amplitude and phase of light in the linear optical regime. Among other functionalities, they offer unique opportunities for shaping the wave front of light to introduce the orbital angular momentum (OAM) to a beam. Such structured light beams bring a new degree of freedom for applications ranging from spectroscopy and micromanipulation to classical and quantum optical communications. To date, reconfigurability or tuning of the optical properties of all-dielectric metasurfaces have been achieved mechanically, thermally, electrically or optically, using phase-change or nonlinear optical materials. However, a majority of demonstrated tuning approaches are either slow or require high optical powers. Arsenic trisulfide (As2S3) chalcogenide glass offering ultra-fast and large χ(3)nonlinearity as well as a low two-photon absorption coefficient in the near and mid-wave infrared spectral range, could provide a new platform for the realization of fast and relatively low intensity reconfigurable metasurfaces. Here, we design and experimentally demonstrate an As2S3 chalcogenide glass based metasurface that enables reshaping of a conventional Hermite-Gaussian beam with no OAM into an OAM beam at low intensity levels, while preserves the original beam's amplitude and phase characteristics at high intensity levels. The proposed metasurface could find applications for a new generation of optical communication systems and optical signal processing.

14.
Opt Lett ; 43(20): 4927-4930, 2018 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-30320785

RESUMEN

We introduce the notion of a supercharge optical array synthesized according to supersymmetric charge operators. Starting from an arbitrary array, mathematical supersymmetry transformation can be used systematically to create a zero-energy physical state below the ground state of the super-partner array. This zero mode, which is pinned deep in the mid-gap of the corresponding supercharge array owing to the square-root spectral relationship between a supercharge and a super-Hamiltonian array, is shown to be protected because of the chiral symmetry inherent to a supercharge array. A supercharge array can be used in practical applications to design a discrete optical system of waveguides or coupled resonators where the mid-gap zero mode facilitates robust light dynamics in either spatial or time domain.

15.
Opt Lett ; 43(15): 3758-3761, 2018 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-30067673

RESUMEN

Single-mode operation of coupled optical systems, such as optical-fiber bundles, lattices of photonic waveguides, or laser arrays, requires an efficient method to suppress unwanted super-modes. Here, we propose a systematic supersymmetry-based approach to selectively eliminate modes of such systems by decreasing their lifetime relative to the lifetime of the mode of interest. The proposed method allows to explore the opto-geometric parameters of the coupled system and to maximize the relative lifetime of a selected mode. We report a 10-fold increase in the relative lifetime of the fundamental modes of large one-dimensional coupled arrays in comparison to simple "head-to-tail" coupling geometries. The ability to select multiple supported modes in one- and two-dimensional arrays is also demonstrated.

16.
Opt Express ; 26(5): 5118-5125, 2018 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-29529719

RESUMEN

Colloidal media with well-defined optical properties have been widely used as model systems in many fundamental and applied studies of light-matter interactions in complex media. Recent progress in the field of engineered nanoscale optical materials with fundamentally new physical properties opens new opportunities for tailoring the properties of colloids. In this work, we experimentally demonstrate the evolution of the optical vortex beams of different topological charges propagating in engineered nano-colloidal suspension of negative polarizability with saturable nonlinearities. Due to the high power of the incident beam, the modulation instability leads to an exponential growth of weak perturbations and thus splits the original vortex beam into a necklace beam consisting of several bright spots. At a fixed power, the number of observed bright spots is intrinsically determined by the topological charge of the incident beam and agrees well with the predictions of our linear stability analysis and numerical simulations. Besides contributing to the fundamental science of light-matter interactions in engineered soft-matter media, this work opens new opportunities for dynamic optical manipulation and transmission of light through scattering media as well as formation of complex optical patterns and light filamentation in naturally existing colloids such as fog and clouds.

17.
ACS Nano ; 12(1): 542-548, 2018 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-29281258

RESUMEN

The future success of semiconductor technology relies on the continuing reduction of the feature size, allowing more components per chip and higher speed. Optical metamaterial-based hyperlens exhibit the ability for spatial pattern compression from the micro- to nanoscale, potentially addressing the ever-increasing demand of photolithograpy for inexpensive, all-optical nanoscale pattern recoding. Here, we demonstrate a photolithography system enabling a feature size of 80 nm using a 405 nm laser source. To realize such a system, we developed a fabrication method to obtain very thick hyperbolic metamaterial enabling a hyperlens with a very large demagnification rate of 3.75. Finally, we discuss several steps necessary to transform the proposed technique into a practical solution for the visible-light-based nanolithography. These include flattening of the inner surface of the hyperlens to increase the working area and integrating the proposed device into a conventional stepper system.

18.
Sci Rep ; 7(1): 10147, 2017 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-28860660

RESUMEN

The controlled interaction of two high intensity beams opens new degrees of freedom for manipulating electromagnetic waves in air. The growing number of applications for laser filaments requires fine control of their formation and propagation. We demonstrate, experimentally and theoretically, that the attraction and fusion of two parallel ultrashort beams with initial powers below the critical value (70% P critical), in the regime where the non-linear optical characteristics of the medium become dominant, enable the eventual formation of a filament downstream. Filament formation is delayed to a predetermined distance in space, defined by the initial separation between the centroids, while still enabling filaments with controllable properties as if formed from a single above-critical power beam. This is confirmed by experimental and theoretical evidence of filament formation such as the individual beam profiles and the supercontinuum emission spectra associated with this interaction.

19.
Sci Rep ; 7(1): 11709, 2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28916768

RESUMEN

Recently, we have predicted that the modulation instability of optical vortex solitons propagating in nonlinear colloidal suspensions with exponential saturable nonlinearity leads to formation of necklace beams (NBs). Here, we investigate the dynamics of NB formation and propagation, and demonstrate a variety of optical beam structures emerging upon vortex beam propagation in engineered nonlinear colloidal medium. In particular, we show that the distance at which the NB is formed depends on the input power of the vortex beam. Moreover, we show that the NB trajectories are not necessarily tangent to the initial vortex ring, and that their velocities have components stemming both from the beam diffraction and from the beam orbital angular momentum. We also demonstrate the generation of elliptical rotating solitons and analyze the influence of losses on their propagation. Finally, we investigate the conservation of the orbital angular momentum in necklace and elliptical rotating beams. Our studies, performed in ideal lossless media and in realistic colloidal suspensions with losses, provide a detailed description of NB dynamics, and may be useful in analysis of light propagation in highly scattering colloids and biological samples.

20.
Opt Express ; 25(14): 16681-16685, 2017 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-28789169

RESUMEN

Structured light beams, such as optical vortices, vector beams, and non-diffracting beams, have been recently studied in a variety of fields, such as optical manipulations, optical telecommunications, nonlinear interactions, quantum physics, and 'super resolution' microscopy.. Their unique physical properties, such as annular intensity profile, helical wavefront and orbital angular momentum, give rise to a plethora of new, fundamental light-matter interactions and device applications. Recent progress in nanostructured materials, including metamaterials and metasurfaces, opened new opportunities for structured light generation on the microscale that exceed the capabilities of bulk-optics approaches such as computer generated holography and diffractive optics. Furthermore, structured optical fields may interact with matters on the subwavelength scale to yield new physical effects, such as spin-orbital momentum coupling. This special issue of Optics Express focuses on the state-of-the-art fundamental research and emerging technologies and applications enabled by the interplay of "structured light" and "structured materials".

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA