Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202411326, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39252480

RESUMEN

Although biocatalysis has garnered widespread attention in both industrial and academic realms, the enzymatic synthesis of chiral oxetanes remains an underdeveloped field. Halohydrin dehalogenases (HHDHs) are industrially relevant enzymes that have been engineered to accomplish the reversible transformation of epoxides. In our work, a biocatalytic platform was constructed for the stereoselective kinetic resolution of chiral oxetanes and formation of 1,3-disubstituted alcohols. HheC from Agrobacterium radiobacter AD1 was engineered to identify key variants capable of catalyzing the dehalogenation of γ-haloalcohols (via HheC M1-M3) and ring opening of oxetanes (via HheC M4-M5) to access both (R)- and (S)-configured products with high stereoselectivity and remarkable catalytic activity, yielding up to 49% with enantioselectivities exceeding 99% ee and E>200. The current strategy is broadly applicable as demonstrated by expansion of substrate scope to include up to 18 examples for dehalogenations and 16 examples for ring opening. Additionally, the functionalized products are versatile building blocks for pharmaceutical applications. To shed light on the molecular recognition mechanisms for the relevant variants, molecular dynamic (MD) simulations were performed. The current strategy expands the scope of HHDH-catalyzed chiral oxetane ring constructions, offering efficient access to both enantiomers of chiral oxetanes and 1,3-disubstituted alcohols.

2.
Angew Chem Int Ed Engl ; : e202416569, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39271458

RESUMEN

The enzymatic atroposelective synthesis of biaryl compounds is relatively rare, despite considerable attention received by biocatalysis in academic and industrial sectors. Imine reductases (IREDs) are an important class of enzymes that have been applied in the asymmetric synthesis of chiral amine building blocks. In this work, two IREDs (IR140 and IR189) were identified to catalyze the efficient desymmetrization of biaryls utilizing various amine donors. Further protein engineering enabled the identification of variants (IR189 M8-M9 and IR189 M13-M14) that are able to catalyze the formation of both (R) and (S) atropisomers in excellent yields and atroposelectivities for up to 24 examples (up to 99% ee and yield). The absolute configuration and rotational barriers were confirmed, and the reactions were readily enlarged to allow isolation of the atropisomeric products in 99% ee and 82% isolated yields. The optically pure biaryl amines were further derivatized into various synthetically useful atropisomers. To shed light on the molecular recognition mechanisms, molecular dynamics (MD) simulations were performed, offering plausible explanations for the improved atroposelectivities and enzymatic activities. The current strategy expands the scope of IRED-catalyzed synthesis of axially chiral biaryl amines, contributing significantly to the field of atroposelective biocatalysis.

3.
Nat Commun ; 13(1): 7813, 2022 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-36535947

RESUMEN

Chiral heterocyclic compounds are needed for important medicinal applications. We report an in silico strategy for the biocatalytic synthesis of chiral N- and O-heterocycles via Baldwin cyclization modes of hydroxy- and amino-substituted epoxides and oxetanes using the limonene epoxide hydrolase from Rhodococcus erythropolis. This enzyme normally catalyzes hydrolysis with formation of vicinal diols. Firstly, the required shutdown of the undesired natural water-mediated ring-opening is achieved by rational mutagenesis of the active site. In silico enzyme design is then continued with generation of the improved mutants. These variants prove to be versatile catalysts for preparing chiral N- and O-heterocycles with up to 99% conversion, and enantiomeric ratios up to 99:1. Crystal structural data and computational modeling reveal that Baldwin-type cyclizations, catalyzed by the reprogrammed enzyme, are enabled by reshaping the active-site environment that directs the distal RHN and HO-substituents to be intramolecular nucleophiles.


Asunto(s)
Epóxido Hidrolasas , Ciclización , Biocatálisis , Epóxido Hidrolasas/metabolismo , Limoneno , Catálisis , Estereoisomerismo
4.
Angew Chem Int Ed Engl ; 61(1): e202110793, 2022 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-34658118

RESUMEN

Protein stability and evolvability influence each other. Although protein dynamics play essential roles in various catalytically important properties, their high flexibility and diversity makes it difficult to incorporate such properties into rational engineering. Therefore, how to unlock the potential evolvability in a user-friendly rational design process remains a challenge. In this endeavor, we describe a method for engineering an enantioselective alcohol dehydrogenase. It enables synthetically important substrate acceptance for 4-chlorophenyl pyridine-2-yl ketone, and perfect stereocontrol of both (S)- and (R)-configured products. Thermodynamic analysis unveiled the subtle interaction between enzyme stability and evolvability, while computational studies provided insights into the origin of selectivity and substrate recognition. Preparative-scale synthesis of the (S)-product (73 % yield; >99 % ee) was performed on a gram-scale. This proof-of-principle study demonstrates that interfaced proline residues can be rationally engineered to unlock evolvability and thus provide access to new biocatalysts with highly improved catalytic performance.


Asunto(s)
Alcohol Deshidrogenasa/metabolismo , Prolina/metabolismo , Ingeniería de Proteínas , Alcohol Deshidrogenasa/química , Prolina/química , Conformación Proteica , Estereoisomerismo , Especificidad por Sustrato
5.
Front Bioeng Biotechnol ; 9: 778584, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35071200

RESUMEN

Chiral amino alcohols are prevalent synthons in pharmaceuticals and synthetic bioactive compounds. The efficient synthesis of chiral amino alcohols using ammonia as the sole amino donor under mild conditions is highly desired and challenging in organic chemistry and biotechnology. Our previous work explored a panel of engineered amine dehydrogenases (AmDHs) derived from amino acid dehydrogenase (AADH), enabling the one-step synthesis of chiral amino alcohols via the asymmetric reductive amination of α-hydroxy ketones. Although the AmDH-directed asymmetric reduction is in a high stereoselective manner, the activity is yet fully excavated. Herein, an engineered AmDH derived from a leucine dehydrogenase from Sporosarcina psychrophila (SpAmDH) was recruited as the starting enzyme, and the combinatorial active-site saturation test/iterative saturation mutagenesis (CAST/ISM) strategy was applied to improve the activity. After three rounds of mutagenesis in an iterative fashion, the best variant wh84 was obtained and proved to be effective in the asymmetric reductive amination of 1-hydroxy-2-butanone with 4-fold improvements in k cat /K m and total turnover number (TTN) values compared to those of the starting enzyme, while maintaining high enantioselectivity (ee >99%) and thermostability (T 50 15 >53°C). In preparative-scale reaction, the conversion of 100 and 200 mM 1-hydroxy-2-butanone catalyzed by wh84 was up to 91-99%. Insights into the source of an enhanced activity were gained by the computational analysis. Our work expands the catalytic repertoire and toolbox of AmDHs.

6.
Org Lett ; 22(24): 9585-9590, 2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33259210

RESUMEN

The development of new synthetic strategies for the efficient construction of versatile pyrrole pharmacores, especially in an operationally simple and environmentally benign fashion, still remains a momentous yet challenging goal. Here, we report a KOAc-catalyzed double decarboxylative transannulation between readily accessible oxazolones and isoxazolidinediones. This transformation represents a new way for skeletal remodeling by utilizing CO2 moiety as traceless activating and directing groups in both reaction partners. The synthetic value is evidenced by the rapid preparation of a broad spectrum of highly functionalized 3-carbamoyl-4-aryl pyrroles in good to excellent yields with exclusive regio-control, including the important Atorvastatin core.

7.
J Org Chem ; 85(16): 10872-10883, 2020 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-32691600

RESUMEN

The general synthesis of fully substituted N2-aryl-1,2,3-triazoles is hitherto challenging compared with that of the N1-aryl counterparts. Herein, we describe a Cu-catalyzed annulation reaction of azirines and aryldiazonium salts. This regiospecific method allows access to a broad spectrum of tri-carbo N2-aryl-1,2,3-triazoles substituted with diverse aryl and alkyl moieties. Its utility is highlighted by the synthesis of several triazole precursors applicable in drug discovery, as well as novel chiral binaphthyl ligands bearing triazole moieties.

8.
ACS Omega ; 5(23): 13588-13594, 2020 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-32566823

RESUMEN

Ketones are of great importance as building blocks in synthetic organic chemistry and biocatalysis. Most ketones cannot easily be quantitatively assayed due to the lack of visible photometric properties. Effective high-throughput assay (HTA) development is therefore necessary for ketone determination. Inspired by previous works of an aldehyde assay based on 2-amino benzamidoxime derivatives, we developed a colorimetric method for rapid a HTA of structurally diverse ketones by using para-methoxy-2-amino benzamidoxime (PMA). This PMA-based method is characterized by high sensitivity manner (µM) with low background, as checked by gas chromatography (GC). It can be used for quantitatively monitoring ketones by fluorescence screening in microtiter plates. Furthermore, this HTA method was employed in mining alcohol dehydrogenases (ADHs), and in directed evolution aimed at enhancing ADH activity in the catalytic transformation of alcohols to ketones. This work provides a general tool for ketone detection in biocatalyst development.

9.
J Org Chem ; 85(8): 5580-5589, 2020 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-32223256

RESUMEN

Here we describe an enantioselective Mannich reaction of cyclic iminoglyoxylates with enamides by virtue of chiral phosphoric acid catalysis in a one-pot manner. The wide substrate scope, mild reaction conditions, and constantly excellent enantioselectivities (>95% ee in most cases) render this protocol highly practical for the rapid construction of valuable noncanonical chiral α-amino-acid building blocks.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA