Your browser doesn't support javascript.
loading
Biocatalytic Desymmetrization for the Atroposelective Synthesis of Axially Chiral Biaryls Using an Engineered Imine Reductase.
Zhang, Pengpeng; Yuan, Bo; Li, Junkuan; Li, Congcong; Guo, Jiaxin; Zhang, Bowen; Qu, Ge; Su, Hao; Turner, Nicholas J; Sun, Zhoutong.
Afiliación
  • Zhang P; Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences, Tianjin Institute of Industrial Biotechnology, CHINA.
  • Yuan B; Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences, Tianjin Institute of Industrial Biotechnology, CHINA.
  • Li J; Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences, Tianjin Institute of Industrial Biotechnology, CHINA.
  • Li C; Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences, Tianjin Institute of Industrial Biotechnology, CHINA.
  • Guo J; Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences, Tianjin Institute of Industrial Biotechnology, CHINA.
  • Zhang B; Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences, Tianjin Institute of Industrial Biotechnology, CHINA.
  • Qu G; Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences, Tianjin Institute of Industrial Biotechnology, CHINA.
  • Su H; Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences, Tianjin Institute of Industrial Biotechnology, CHINA.
  • Turner NJ; The University of Manchester, Department of Chemistry, Manchester Institute of Biotechnology, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.
  • Sun Z; Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences, National Enyzme Engineering Lab, 32 West 7th Avenue, Tianjin Airport Economic Area, 300308, Tianjin, CHINA.
Angew Chem Int Ed Engl ; : e202416569, 2024 Sep 13.
Article en En | MEDLINE | ID: mdl-39271458
ABSTRACT
The enzymatic atroposelective synthesis of biaryl compounds is relatively rare, despite considerable attention received by biocatalysis in academic and industrial sectors. Imine reductases (IREDs) are an important class of enzymes that have been applied in the asymmetric synthesis of chiral amine building blocks. In this work, two IREDs (IR140 and IR189) were identified to catalyze the efficient desymmetrization of biaryls utilizing various amine donors. Further protein engineering enabled the identification of variants (IR189 M8-M9 and IR189 M13-M14) that are able to catalyze the formation of both (R) and (S) atropisomers in excellent yields and atroposelectivities for up to 24 examples (up to 99% ee and yield). The absolute configuration and rotational barriers were confirmed, and the reactions were readily enlarged to allow isolation of the atropisomeric products in 99% ee and 82% isolated yields. The optically pure biaryl amines were further derivatized into various synthetically useful atropisomers. To shed light on the molecular recognition mechanisms, molecular dynamics (MD) simulations were performed, offering plausible explanations for the improved atroposelectivities and enzymatic activities. The current strategy expands the scope of IRED-catalyzed synthesis of axially chiral biaryl amines, contributing significantly to the field of atroposelective biocatalysis.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Alemania