Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 43(6): 114271, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38823013

RESUMEN

The epithelial adaptations to mechanical stress are facilitated by molecular and tissue-scale changes that include the strengthening of junctions, cytoskeletal reorganization, and cell-proliferation-mediated changes in tissue rheology. However, the role of cell size in controlling these properties remains underexplored. Our experiments in the zebrafish embryonic epidermis, guided by theoretical estimations, reveal a link between epithelial mechanics and cell size, demonstrating that an increase in cell size compromises the tissue fracture strength and compliance. We show that an increase in E-cadherin levels in the proliferation-deficient epidermis restores epidermal compliance but not the fracture strength, which is largely regulated by Ezrin-an apical membrane-cytoskeleton crosslinker. We show that Ezrin fortifies the epithelium in a cell-size-dependent manner by countering non-muscle myosin-II-mediated contractility. This work uncovers the importance of cell size maintenance in regulating the mechanical properties of the epithelium and fostering protection against future mechanical stresses.


Asunto(s)
Tamaño de la Célula , Proteínas del Citoesqueleto , Miosina Tipo II , Pez Cebra , Animales , Pez Cebra/metabolismo , Proteínas del Citoesqueleto/metabolismo , Proteínas del Citoesqueleto/genética , Miosina Tipo II/metabolismo , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Estrés Mecánico , Células Epiteliales/metabolismo , Cadherinas/metabolismo , Epidermis/metabolismo , Epitelio/metabolismo , Proliferación Celular
2.
Int J Dev Biol ; 64(4-5-6): 343-352, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32658994

RESUMEN

The epidermis, being the outermost epithelial layer in metazoans, experiences multiple external and self-generated mechanical stimuli. The tissue-scale response to these mechanical stresses has been actively studied in the adult stratified epidermis. However, the response of the developing bi-layered epidermis to differential tension and its molecular regulation has remained poorly characterised. Here we report an oil injection based method, which in combination with atomic force microscopy (AFM), allows manipulation as well as estimation of tension in the developing epidermis. Our results show that the injection of mineral oil into the brain ventricle of developing zebrafish embryos stretches the overlying epidermis. The epidermal tension increases linearly with the injected volume of oil and the injection of 14-17 nL oil results in a two-fold increase in epidermal tension. This increase in epidermal tension is sufficient to elicit a physiological response characterised by temporal changes in the cell cross-sectional area and an increase in cell proliferation. Our data further indicate that the depletion of E-cadherin in the epidermis is detrimental for tissue integrity under increased mechanical stress. The application of this experimental paradigm in a genetically tractable organism such as zebrafish can be useful in uncovering mechanisms of tension sustenance in the developing epidermis.


Asunto(s)
Cadherinas/metabolismo , Embrión no Mamífero/metabolismo , Epidermis/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Embrión no Mamífero/embriología , Células Epidérmicas/metabolismo , Epidermis/embriología , Microscopía de Fuerza Atómica/métodos , Microscopía Confocal/métodos , Estrés Mecánico , Pez Cebra/embriología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA