Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mar Drugs ; 21(6)2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37367666

RESUMEN

Carotenoids are a large group of health-promoting compounds used in many industrial sectors, such as foods, feeds, pharmaceuticals, cosmetics, nutraceuticals, and colorants. Considering the global population growth and environmental challenges, it is essential to find new sustainable sources of carotenoids beyond those obtained from agriculture. This review focuses on the potential use of marine archaea, bacteria, algae, and yeast as biological factories of carotenoids. A wide variety of carotenoids, including novel ones, were identified in these organisms. The role of carotenoids in marine organisms and their potential health-promoting actions have also been discussed. Marine organisms have a great capacity to synthesize a wide variety of carotenoids, which can be obtained in a renewable manner without depleting natural resources. Thus, it is concluded that they represent a key sustainable source of carotenoids that could help Europe achieve its Green Deal and Recovery Plan. Additionally, the lack of standards, clinical studies, and toxicity analysis reduces the use of marine organisms as sources of traditional and novel carotenoids. Therefore, further research on the processing of marine organisms, the biosynthetic pathways, extraction procedures, and examination of their content is needed to increase carotenoid productivity, document their safety, and decrease costs for their industrial implementation.


Asunto(s)
Microalgas , Algas Marinas , Carotenoides/farmacología , Carotenoides/metabolismo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Microalgas/metabolismo , Archaea , Organismos Acuáticos , Antiinflamatorios/farmacología , Antiinflamatorios/metabolismo , Bacterias , Levaduras
2.
Chemosphere ; 315: 137761, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36610507

RESUMEN

In recent years, there has been an increasing concern related to the contamination of aqueous ecosystems by heavy metals, highlighting the need to improve the current techniques for remediation. This work intends to address the problem of removing heavy metals from waterbodies by combining two complementary methodologies: adsorption to a copolymer synthesized by inverse vulcanization of sulfur and vegetable oils and phytoremediation by the microalga Chlorella sorokiniana to enhance the metal adsorption. After studying the tolerance and growth of Chlorella sorokiniana in the presence of the copolymer, the adsorption of highly concentrated Cd2+ (50 mg L-1) by the copolymer and microalgae on their own and the combined immobilized system (AlgaPol) was compared. Additionally, adsorption studies have been performed on mixtures of the heavy metals Cd2+ and Cu2+ at a concentration of 8 mg L-1 each. AlgaPol biofilm is able to remove these metals from the growth medium by more than 90%. The excellent metal adsorption capacity of this biofilm can be kinetically described by a pseudo-second-order model.


Asunto(s)
Chlorella , Metales Pesados , Microalgas , Aguas Residuales , Cadmio , Biodegradación Ambiental , Ecosistema , Metales Pesados/análisis , Adsorción
3.
N Biotechnol ; 73: 1-8, 2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-36513346

RESUMEN

Nordic microalgae are a group of photosynthetic organisms acclimated to growth at low temperature and in varying light conditions; the subarctic climate offers bright days with moderate temperatures during summer and cold and dark winter months. The robustness to these natural stress conditions makes the species interesting for large-scale cultivation in harsh environments and for the production of high-value compounds. The aim of this study was to explore the ability of nineteen species of Nordic microalgae to produce different bioactive compounds, such as carotenoids or polyphenols. The results showed that some of these strains are able to produce high amounts of carotenoids (over 12 mg·g-1 dry weight) and phenolic compounds (over 20 mg GAE·g-1 dry weight). Based on these profiles, six species were selected for cultivation under high light and cold stress (500 µmol·m-2·s-1 and 10 ˚C). The strains Chlorococcum sp. (MC1) and Scenedesmus sp. (B2-2) exhibited similar values of biomass productivity under standard or stress conditions, but produced higher concentrations of carotenoids (an increase of 40% and 25%, respectively), phenolic compounds (an increase of 40% and 30%, respectively), and showed higher antioxidant capacity (an increase of 15% and 20%, respectively) during stress. The results highlight the ability of these Nordic microalgae as outstanding producers of bioactive compounds, justifying their cultivation at large scale in Nordic environments.


Asunto(s)
Antioxidantes , Microalgas , Carotenoides , Polifenoles , Fenoles , Biomasa
4.
Bioresour Technol ; 359: 127445, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35718245

RESUMEN

Nordic Desmodesmus microalgal strains (2-6) and (RUC-2) were exposed to abiotic stress (light and salt) to enhance lipids and carotenoids. The biomass output of both strains increased by more than 50% during light stress of 800 µmol m-2 s-1 compared to control light. The biomass of Desmodesmus sp. (2-6) contained most lipids (15% of dry weight) and total carotenoids (16.6 mg g-1) when grown at moderate light stress (400 µmol m-2 s-1), which further could be enhanced up to 2.5-fold by salinity stress. Desmodesmus sp. (RUC-2) exhibited maximal lipid (26.5%) and carotenoid (43.8 mg L-1) content at light intensities of 400 and 100 µmol m-2 s-1, respectively. Salinity stress stimulated lipid accumulation by 39%. Nordic Desmodesmus strains therefore are not only able to tolerate stress conditions, but their biomass considerably improves under stress. These strains have high potential to be used in algal bio-factories on low-cost medium like Baltic seawater.


Asunto(s)
Microalgas , Biomasa , Carotenoides , Luz , Lípidos
5.
Aquat Toxicol ; 239: 105941, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34469852

RESUMEN

The chlorophyte microalga Chlorella sorokiniana was tested for the bioremediation of heavy metals pollution. It was cultured with different concentrations of Cu2+, Cd2+, As (III) and As (V), showing a significant inhibition on its growth at concentrations of 500 µM Cu2+, 250 µM Cd2+, 750 µM AsO33- and 5 mM AsO43- or higher. Moreover, the consumption of ammonium was also studied, showing significant differences for concentrations higher than 1 mM of Cu2+ and As (III), and 5 mM of As (V). The determination of intracellular heavy metals concentration revealed that Chlorella sorokiniana is an outstanding Cd accumulator organism, able to accumulate 11,232 mg kg-1 of Cd, and removing 65% of initial concentration of this heavy metal. Finally, antioxidant enzymes, such as catalase (CAT) and ascorbate peroxidase (APX), and enzymes involved in the production of glutamate and cysteine, such as glutamine syntethase (GS), glutamate dehydrogenase (GDH), O-acetylserine (thiol) lyase (OASTL) and NAD-isocitrate dehydrogenase (NAD-IDH) were studied both at gene expression and enzymatic activity levels. These enzymes exhibited different grades of upregulation, especially in response to Cd and As stress. However, GS expression was downregulated when Chlorella sorokiniana was cultured in the presence of these heavy metals.


Asunto(s)
Chlorella , Metales Pesados , Microalgas , Contaminantes Químicos del Agua , Biodegradación Ambiental , Cadmio/toxicidad , Metales Pesados/toxicidad , Contaminantes Químicos del Agua/toxicidad
6.
Ecotoxicol Environ Saf ; 207: 111301, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-32949933

RESUMEN

Cadmium is one of the most common heavy metals in contaminated aquatic environments and one of the most toxic contaminants for phytoplankton. Nevertheless, there are not enough studies focused on the effect of this metal in algae. Through a proteomic approach, this work shows how Cd can alter the growth, cell morphology and metabolism of the microalga Chlorella sorokiniana. Using the sequential window acquisition of all theoretical fragment ion spectra mass spectrometry (SWATH-MS), we concluded that exposure of Chlorella sorokiniana to 250 µM Cd2+ for 40 h caused downregulation of different metabolic pathways, such as photosynthesis, oxidative phosphorylation, glycolysis, TCA cycle and ribosomal proteins biosynthesis. However, photorespiration, antioxidant enzymes, gluconeogenesis, starch catabolism, and biosynthesis of glutamate, cysteine, glycine and serine were upregulated, under the same conditions. Finally, exposure to Cd also led to changes in the metabolism of carotenoids and lipids. In addition, the high tolerance of Chlorella sorokiniana to Cd points to this microalga as a potential microorganism to be used in bioremediation processes.


Asunto(s)
Cadmio/toxicidad , Chlorella/efectos de los fármacos , Microalgas/efectos de los fármacos , Proteoma/metabolismo , Contaminantes Químicos del Agua/toxicidad , Antioxidantes/metabolismo , Metabolismo de los Hidratos de Carbono/efectos de los fármacos , Carotenoides/metabolismo , Chlorella/metabolismo , Espectrometría de Masas , Metales Pesados/metabolismo , Microalgas/metabolismo , Fotosíntesis/efectos de los fármacos , Proteómica
7.
Data Brief ; 33: 106544, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33294530

RESUMEN

Cadmium is one of the most hazardous heavy metal for aquatic environments and one of the most toxic contaminants for phytoplankton. This work provides the dataset associated with the research publication "Effect of cadmium in the microalga Chlorella sorokiniana: a proteomic study" [1]. This dataset describes a proteomic approach, based on the sequential window acquisition of all theoretical fragment ion spectra mass spectrometry (SWATH-MS), derived from exposure of Chlorella sorokiniana to 250 µM Cd2+ for 40 h, showing the proteins that are up- or downregulated. The processing of data included the identification of the Chlamydomonas reinhardtii protein sequences equivalent to the corresponding of Chlorella sorokiniana sequences obtained, which made possible to use KEGG Database. MS and MS/MS information, and quantitative data were deposited PRIDE public repository under accession number PXD015932.

8.
N Biotechnol ; 51: 31-38, 2019 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-30738878

RESUMEN

There has been growing interest in the use of microalgae for the production of biofuels, but production costs continue to be too high to compete with fossil fuel prices. One of the main limitations for photobioreactor productivity is light shielding, especially at high cell densities. The growth of the green microalga Chlorella sorokiniana, a robust industrial species, has been evaluated under different trophic conditions with traditional carbon sources, such as glucose and sucrose, and alternative low cost carbon sources, such as carob pod extract, industrial glycerol and acetate-rich oxidized wine waste lees. The mixotrophic cultivation of this microalga with wine waste lees alleviated the problems of light shielding observed in photoautotrophic cultures, improving specific growth rate (0.052 h-1) compared with the other organic sources. The fed-batch mixotrophic culture of Chlorella sorokiniana in a 2 L stirred tank reactor, with optimized nutritional conditions, 100 mM of acetate coming from the oxidized wine waste lees and 30 mM of ammonium, produced an algal biomass concentration of 11 g L-1 with a lipid content of 38 % (w/w). This fed-batch strategy has been found to be a very effective means to enhance the biomass and neutral lipid productivity.


Asunto(s)
Chlorella/metabolismo , Residuos Industriales , Lípidos/biosíntesis , Chlorella/crecimiento & desarrollo , Lípidos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA